From local spectral species to global spectral communities: A benchmark for ecosystem diversity estimate by remote sensing

被引:49
|
作者
Rocchini, Duccio [1 ,2 ]
Salvatori, Nicole [3 ,4 ]
Beierkuhnlein, Carl [5 ]
Chiarucci, Alessandro [1 ]
de Boissieu, Florian [6 ]
Foerster, Michael [7 ]
Garzon-Lopez, Carol X. [8 ]
Gillespie, Thomas W. [9 ]
Hauffe, Heidi C. [10 ]
He, Kate S. [11 ]
Kleinschmit, Birgit [7 ]
Lenoir, Jonathan [12 ]
Malavasi, Marco [2 ]
Moudry, Vitezslav [2 ]
Nagendra, Harini [13 ]
Payne, Davnah [14 ]
Simova, Petra [2 ]
Torresani, Michele [15 ,17 ]
Wegmann, Martin [16 ]
Feret, Jean-Baptiste [6 ]
机构
[1] Alma Mater Studiorum Univ Bologna, Dept Biol Geol & Environm Sci, Via Irnerio 42, I-40126 Bologna, Italy
[2] Czech Univ Life Sci Prague, Fac Environm Sci, Dept Appl Geoinformat & Spatial Planning, Kamycka 129, Prague 16500, Suchdol, Czech Republic
[3] Univ Udine, Dept Agrifood Anim & Environm Sci DI4A, Via Sci 206, I-33100 Udine, UD, Italy
[4] Univ Trieste, Dept Life Sci, Via Giorgieri 5, I-34100 Trieste, TS, Italy
[5] Univ Bayreuth, BayCEER, Biogeog, Univ Str 30, D-95440 Bayreuth, Germany
[6] IRSTEA Montpellier, UMR TETIS, 500 Rue JF Breton, F-34093 Montpellier 5, France
[7] Tech Univ Berlin, Dept Geoinformat Environm Planning, Str 17 Juni 145, D-10623 Berlin, Germany
[8] Univ los Andes, Ecol & Vegetat Physiol Grp EcoFiv, Cr 1E 18A, Bogota, Colombia
[9] Univ Calif Los Angeles, Dept Geog, Los Angeles, CA 90095 USA
[10] Fdn Edmund Mach, Res & Innovat Ctr, Dept Biodivers & Mol Ecol, Via E Mach 1, I-38010 San Michele All Adige, TN, Italy
[11] Murray State Univ, Dept Biol Sci, Murray, KY 42071 USA
[12] Univ Picardie Jules Verne, UR Ecol & Dynam Syst Anthropises, EDYSAN, UMR 7058 CNRS UPJV, 1 Rue Louvels, F-80037 Amiens 1, France
[13] Azim Premji Univ, PES Inst Technol Campus, Pixel Pk,B Block,Hosur Rd, Bangalore 560100, Karnataka, India
[14] Univ Bern, Inst Plant Sci, GMBA Off, Altenbergrain 21, CH-3013 Bern, Switzerland
[15] Free Univ Bolzano Bozen, Fac Sci & Technol, Piazza Univ,Univ Pl 1, I-39100 Bolzano, Bozen, Italy
[16] Univ Wurzburg, Dept Remote Sensing, Remote Sensing & Biodivers Res Grp, Wurzburg, Germany
[17] Univ Trento, Dept Civil Environm & Mech Engn, Atmospher Phys Grp, Via Mesiano 77, I-38123 Trento, Italy
基金
欧盟地平线“2020”;
关键词
Biodiversity; Ecological informatics; Modelling; Remote sensing; Satellite imagery; BETA-DIVERSITY; CONSISTENT TERMINOLOGY; TROPICAL FOREST; BIODIVERSITY; PATTERNS; POPULATION; DISTANCE;
D O I
10.1016/j.ecoinf.2020.101195
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
In the light of unprecedented change in global biodiversity, real-time and accurate ecosystem and biodiversity assessments are becoming increasingly essential. Nevertheless, estimation of biodiversity using ecological field data can be difficult for several reasons. For instance, for very large areas, it is challenging to collect data that provide reliable information. Some of these restrictions in Earth observation can be avoided through the use of remote sensing approaches. Various studies have estimated biodiversity on the basis of the Spectral Variation Hypothesis (SVH). According to this hypothesis, spectral heterogeneity over the different pixel units of a spatial grid reflects a higher niche heterogeneity, allowing more organisms to coexist. Recently, the spectral species concept has been derived, following the consideration that spectral heterogeneity at a landscape scale corresponds to a combination of subspaces sharing a similar spectral signature. With the use of high resolution remote sensing data, on a local scale, these subspaces can be identified as separate spectral entities, the so called "spectral species". Our approach extends this concept over wide spatial extents and to a higher level of biological organization. We applied this method to MODIS imagery data across Europe. Obviously, in this case, a spectral species identified by MODIS is not associated to a single plant species in the field but rather to a species assemblage, habitat, or ecosystem. Based on such spectral information, we propose a straightforward method to derive a-(local relative abundance and richness of spectral species) and fl-diversity (turnover of spectral species) maps over wide geographical areas.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Multi-temporal spectral reflectance of tropical savanna understorey species and implications for hyperspectral remote sensing
    Pfitzner, Kirrilly
    Bartolo, Renee
    Whiteside, Timothy
    Loewensteiner, David
    Esparon, Andrew
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 112
  • [42] Algorithms to retrieve the spectral diffuse attenuation coefficient of light in the ocean from remote sensing
    Demeaux, Charlotte Begouen
    Boss, Emmanuel
    Tan, Jing
    Frouin, Robert
    OPTICS EXPRESS, 2024, 32 (02) : 2507 - 2526
  • [43] Hyper-spectral remote sensing of the spread of soil, contaminants from landfill sites
    Folkard, AM
    Cummins, DI
    CONTAMINATED SOIL '98, VOLS 1 AND 2, 1998, : 153 - 161
  • [44] Spectral-Temporal Consistency Prior for Cloud Removal From Remote Sensing Images
    Yang, Shi-Jun
    Zheng, Yu-Bang
    Li, Heng-Chao
    Chen, Yong
    Zhu, Qing
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [45] Adaptive thematic object extraction from remote sensing image based on spectral matching
    Qiao, Cheng
    Luo, Jiancheng
    Shen, Zhanfeng
    Zhu, Zhiwen
    Ming, Dongping
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2012, 19 : 248 - 251
  • [46] Spectral deconvolution of water column features from hyperspectral remote sensing data images
    Maness, SJ
    Donato, TF
    Osburn, CL
    Rhea, WJ
    Hamdan, LJ
    Walker, SE
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 230 : U1766 - U1767
  • [47] REMOTE-SENSING OF TRACE GASES IN THE MIDINFRARED SPECTRAL REGION FROM A NADIR VIEW
    WETZEL, G
    FISCHER, H
    OELHAF, H
    APPLIED OPTICS, 1995, 34 (03): : 467 - 479
  • [48] Retrieving ionospheric electron density profile from FUV spectral remote sensing measurements
    Wang Jing
    Tang Yi
    Zhang Zhi-Ge
    Zheng Xu-Li
    Ni Guo-Qiang
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2013, 56 (04): : 1077 - 1083
  • [49] Extracting Photovoltaic Panels From Heterogeneous Remote Sensing Images With Spatial and Spectral Differences
    Zhao, Zhiyu
    Chen, Yunhao
    Li, Kangning
    Ji, Weizhen
    Sun, Hao
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 5553 - 5564
  • [50] Change detection from remote sensing imageries using spectral change vector analysis
    Wen, Xinping
    Yang, Xiaofeng
    2009 ASIA-PACIFIC CONFERENCE ON INFORMATION PROCESSING (APCIP 2009), VOL 2, PROCEEDINGS, 2009, : 189 - +