From local spectral species to global spectral communities: A benchmark for ecosystem diversity estimate by remote sensing

被引:49
|
作者
Rocchini, Duccio [1 ,2 ]
Salvatori, Nicole [3 ,4 ]
Beierkuhnlein, Carl [5 ]
Chiarucci, Alessandro [1 ]
de Boissieu, Florian [6 ]
Foerster, Michael [7 ]
Garzon-Lopez, Carol X. [8 ]
Gillespie, Thomas W. [9 ]
Hauffe, Heidi C. [10 ]
He, Kate S. [11 ]
Kleinschmit, Birgit [7 ]
Lenoir, Jonathan [12 ]
Malavasi, Marco [2 ]
Moudry, Vitezslav [2 ]
Nagendra, Harini [13 ]
Payne, Davnah [14 ]
Simova, Petra [2 ]
Torresani, Michele [15 ,17 ]
Wegmann, Martin [16 ]
Feret, Jean-Baptiste [6 ]
机构
[1] Alma Mater Studiorum Univ Bologna, Dept Biol Geol & Environm Sci, Via Irnerio 42, I-40126 Bologna, Italy
[2] Czech Univ Life Sci Prague, Fac Environm Sci, Dept Appl Geoinformat & Spatial Planning, Kamycka 129, Prague 16500, Suchdol, Czech Republic
[3] Univ Udine, Dept Agrifood Anim & Environm Sci DI4A, Via Sci 206, I-33100 Udine, UD, Italy
[4] Univ Trieste, Dept Life Sci, Via Giorgieri 5, I-34100 Trieste, TS, Italy
[5] Univ Bayreuth, BayCEER, Biogeog, Univ Str 30, D-95440 Bayreuth, Germany
[6] IRSTEA Montpellier, UMR TETIS, 500 Rue JF Breton, F-34093 Montpellier 5, France
[7] Tech Univ Berlin, Dept Geoinformat Environm Planning, Str 17 Juni 145, D-10623 Berlin, Germany
[8] Univ los Andes, Ecol & Vegetat Physiol Grp EcoFiv, Cr 1E 18A, Bogota, Colombia
[9] Univ Calif Los Angeles, Dept Geog, Los Angeles, CA 90095 USA
[10] Fdn Edmund Mach, Res & Innovat Ctr, Dept Biodivers & Mol Ecol, Via E Mach 1, I-38010 San Michele All Adige, TN, Italy
[11] Murray State Univ, Dept Biol Sci, Murray, KY 42071 USA
[12] Univ Picardie Jules Verne, UR Ecol & Dynam Syst Anthropises, EDYSAN, UMR 7058 CNRS UPJV, 1 Rue Louvels, F-80037 Amiens 1, France
[13] Azim Premji Univ, PES Inst Technol Campus, Pixel Pk,B Block,Hosur Rd, Bangalore 560100, Karnataka, India
[14] Univ Bern, Inst Plant Sci, GMBA Off, Altenbergrain 21, CH-3013 Bern, Switzerland
[15] Free Univ Bolzano Bozen, Fac Sci & Technol, Piazza Univ,Univ Pl 1, I-39100 Bolzano, Bozen, Italy
[16] Univ Wurzburg, Dept Remote Sensing, Remote Sensing & Biodivers Res Grp, Wurzburg, Germany
[17] Univ Trento, Dept Civil Environm & Mech Engn, Atmospher Phys Grp, Via Mesiano 77, I-38123 Trento, Italy
基金
欧盟地平线“2020”;
关键词
Biodiversity; Ecological informatics; Modelling; Remote sensing; Satellite imagery; BETA-DIVERSITY; CONSISTENT TERMINOLOGY; TROPICAL FOREST; BIODIVERSITY; PATTERNS; POPULATION; DISTANCE;
D O I
10.1016/j.ecoinf.2020.101195
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
In the light of unprecedented change in global biodiversity, real-time and accurate ecosystem and biodiversity assessments are becoming increasingly essential. Nevertheless, estimation of biodiversity using ecological field data can be difficult for several reasons. For instance, for very large areas, it is challenging to collect data that provide reliable information. Some of these restrictions in Earth observation can be avoided through the use of remote sensing approaches. Various studies have estimated biodiversity on the basis of the Spectral Variation Hypothesis (SVH). According to this hypothesis, spectral heterogeneity over the different pixel units of a spatial grid reflects a higher niche heterogeneity, allowing more organisms to coexist. Recently, the spectral species concept has been derived, following the consideration that spectral heterogeneity at a landscape scale corresponds to a combination of subspaces sharing a similar spectral signature. With the use of high resolution remote sensing data, on a local scale, these subspaces can be identified as separate spectral entities, the so called "spectral species". Our approach extends this concept over wide spatial extents and to a higher level of biological organization. We applied this method to MODIS imagery data across Europe. Obviously, in this case, a spectral species identified by MODIS is not associated to a single plant species in the field but rather to a species assemblage, habitat, or ecosystem. Based on such spectral information, we propose a straightforward method to derive a-(local relative abundance and richness of spectral species) and fl-diversity (turnover of spectral species) maps over wide geographical areas.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Determining forest species composition using high spectral resolution remote sensing data
    Martin, ME
    Newman, SD
    Aber, JD
    Congalton, RG
    REMOTE SENSING OF ENVIRONMENT, 1998, 65 (03) : 249 - 254
  • [22] Species diversity: from global decreases to local increases
    Sax, DF
    Gaines, SD
    TRENDS IN ECOLOGY & EVOLUTION, 2003, 18 (11) : 561 - 566
  • [23] A Multicenter Soft Supervised Classification Method for Modeling Spectral Diversity in Multispectral Remote Sensing Data
    Guo, Jifa
    Du, Shihong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [24] An empirical algorithm to estimate spectral average cosine of underwater light field from remote sensing data in coastal oceanic waters
    Talaulikar, Madhubala
    Suresh, T.
    Desa, Elgar
    Inamdar, A.
    LIMNOLOGY AND OCEANOGRAPHY-METHODS, 2014, 12 : 74 - 85
  • [25] Designing a spectral index to estimate vegetation water content from remote sensing data -: Part 2.: Validation and applications
    Ceccato, P
    Flasse, S
    Grégoire, JM
    REMOTE SENSING OF ENVIRONMENT, 2002, 82 (2-3) : 198 - 207
  • [26] Albedo estimated from remote sensing correlates with ecosystem multifunctionality in global drylands
    Zhao, Yanchuang
    Wang, Xinyuan
    Novillo, Carlos J.
    Arrogante-Funes, Patricia
    Vazquez-Jimenez, Rene
    Maestre, Fernando T.
    JOURNAL OF ARID ENVIRONMENTS, 2018, 157 : 116 - 123
  • [27] Optimizing multiscale segmentation with local spectral heterogeneity measure for high resolution remote sensing images
    Shen, Yu
    Chen, Jianyu
    Xiao, Liang
    Pan, Delu
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2019, 157 : 13 - 25
  • [28] Classification of multi-spectral remote sensing data using a local transfer function classifier
    Ouyang, Y.
    Ma, J.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2006, 27 (23-24) : 5401 - 5408
  • [29] Wavelet domain denoising of multispectral remote sensing imagery adapted to the local spatial and spectral context
    Pizurica, A
    Huysmans, B
    Scheunders, P
    Philips, W
    IGARSS 2005: IEEE International Geoscience and Remote Sensing Symposium, Vols 1-8, Proceedings, 2005, : 4260 - 4263
  • [30] Spectral-Spatial Clustering with a Local Weight Parameter Determination Method for Remote Sensing Imagery
    Ma, Ailong
    Zhong, Yanfei
    Zhang, Liangpei
    REMOTE SENSING, 2016, 8 (02)