From local spectral species to global spectral communities: A benchmark for ecosystem diversity estimate by remote sensing

被引:49
|
作者
Rocchini, Duccio [1 ,2 ]
Salvatori, Nicole [3 ,4 ]
Beierkuhnlein, Carl [5 ]
Chiarucci, Alessandro [1 ]
de Boissieu, Florian [6 ]
Foerster, Michael [7 ]
Garzon-Lopez, Carol X. [8 ]
Gillespie, Thomas W. [9 ]
Hauffe, Heidi C. [10 ]
He, Kate S. [11 ]
Kleinschmit, Birgit [7 ]
Lenoir, Jonathan [12 ]
Malavasi, Marco [2 ]
Moudry, Vitezslav [2 ]
Nagendra, Harini [13 ]
Payne, Davnah [14 ]
Simova, Petra [2 ]
Torresani, Michele [15 ,17 ]
Wegmann, Martin [16 ]
Feret, Jean-Baptiste [6 ]
机构
[1] Alma Mater Studiorum Univ Bologna, Dept Biol Geol & Environm Sci, Via Irnerio 42, I-40126 Bologna, Italy
[2] Czech Univ Life Sci Prague, Fac Environm Sci, Dept Appl Geoinformat & Spatial Planning, Kamycka 129, Prague 16500, Suchdol, Czech Republic
[3] Univ Udine, Dept Agrifood Anim & Environm Sci DI4A, Via Sci 206, I-33100 Udine, UD, Italy
[4] Univ Trieste, Dept Life Sci, Via Giorgieri 5, I-34100 Trieste, TS, Italy
[5] Univ Bayreuth, BayCEER, Biogeog, Univ Str 30, D-95440 Bayreuth, Germany
[6] IRSTEA Montpellier, UMR TETIS, 500 Rue JF Breton, F-34093 Montpellier 5, France
[7] Tech Univ Berlin, Dept Geoinformat Environm Planning, Str 17 Juni 145, D-10623 Berlin, Germany
[8] Univ los Andes, Ecol & Vegetat Physiol Grp EcoFiv, Cr 1E 18A, Bogota, Colombia
[9] Univ Calif Los Angeles, Dept Geog, Los Angeles, CA 90095 USA
[10] Fdn Edmund Mach, Res & Innovat Ctr, Dept Biodivers & Mol Ecol, Via E Mach 1, I-38010 San Michele All Adige, TN, Italy
[11] Murray State Univ, Dept Biol Sci, Murray, KY 42071 USA
[12] Univ Picardie Jules Verne, UR Ecol & Dynam Syst Anthropises, EDYSAN, UMR 7058 CNRS UPJV, 1 Rue Louvels, F-80037 Amiens 1, France
[13] Azim Premji Univ, PES Inst Technol Campus, Pixel Pk,B Block,Hosur Rd, Bangalore 560100, Karnataka, India
[14] Univ Bern, Inst Plant Sci, GMBA Off, Altenbergrain 21, CH-3013 Bern, Switzerland
[15] Free Univ Bolzano Bozen, Fac Sci & Technol, Piazza Univ,Univ Pl 1, I-39100 Bolzano, Bozen, Italy
[16] Univ Wurzburg, Dept Remote Sensing, Remote Sensing & Biodivers Res Grp, Wurzburg, Germany
[17] Univ Trento, Dept Civil Environm & Mech Engn, Atmospher Phys Grp, Via Mesiano 77, I-38123 Trento, Italy
基金
欧盟地平线“2020”;
关键词
Biodiversity; Ecological informatics; Modelling; Remote sensing; Satellite imagery; BETA-DIVERSITY; CONSISTENT TERMINOLOGY; TROPICAL FOREST; BIODIVERSITY; PATTERNS; POPULATION; DISTANCE;
D O I
10.1016/j.ecoinf.2020.101195
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
In the light of unprecedented change in global biodiversity, real-time and accurate ecosystem and biodiversity assessments are becoming increasingly essential. Nevertheless, estimation of biodiversity using ecological field data can be difficult for several reasons. For instance, for very large areas, it is challenging to collect data that provide reliable information. Some of these restrictions in Earth observation can be avoided through the use of remote sensing approaches. Various studies have estimated biodiversity on the basis of the Spectral Variation Hypothesis (SVH). According to this hypothesis, spectral heterogeneity over the different pixel units of a spatial grid reflects a higher niche heterogeneity, allowing more organisms to coexist. Recently, the spectral species concept has been derived, following the consideration that spectral heterogeneity at a landscape scale corresponds to a combination of subspaces sharing a similar spectral signature. With the use of high resolution remote sensing data, on a local scale, these subspaces can be identified as separate spectral entities, the so called "spectral species". Our approach extends this concept over wide spatial extents and to a higher level of biological organization. We applied this method to MODIS imagery data across Europe. Obviously, in this case, a spectral species identified by MODIS is not associated to a single plant species in the field but rather to a species assemblage, habitat, or ecosystem. Based on such spectral information, we propose a straightforward method to derive a-(local relative abundance and richness of spectral species) and fl-diversity (turnover of spectral species) maps over wide geographical areas.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Remote Sensing Data Classification Using Combined Spectral and Spatial Local Linear Embedding (CSSLE)
    Xue, Li-fang
    Yi, Xiu-shuang
    Liu, Xiu-mei
    Li, Feng-yun
    Li, Jie
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND COMPUTER SCIENCE (AICS 2016), 2016, : 321 - 326
  • [32] Uncovering the hidden: Leveraging sub-pixel spectral diversity to estimate plant diversity from space
    Rossi, Christian
    Gholizadeh, Hamed
    REMOTE SENSING OF ENVIRONMENT, 2023, 296
  • [33] A Method for Water Body Adaptive Extraction from Remote Sensing Imagery Based on Local End Member Spectral Characterization
    Zhang Xin
    Zhu Chang-ming
    Luo Jian-cheng
    Li Wan-qing
    Yang Ji-wei
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2013, 33 (06) : 1670 - 1677
  • [34] Biases From Spectral Leakage in Remote Sensing of Near-Surface Currents
    Weichert, Stefan
    Smeltzer, Benjamin K.
    Ellingsen, Simen A.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [35] Evaluation on Spectral Unmixing Techniques from Hyperspectral Remote Sensing with Spatial Resolution
    Luo, W. F.
    Luo, S. M.
    Zhang, B.
    Zhong, L.
    ITESS: 2008 PROCEEDINGS OF INFORMATION TECHNOLOGY AND ENVIRONMENTAL SYSTEM SCIENCES, PT 1, 2008, : 123 - 129
  • [36] Correlating species and spectral diversities using hyperspectral remote sensing in early-successional fields
    Aneece, Itiya P.
    Epstein, Howard
    Lerdau, Manuel
    ECOLOGY AND EVOLUTION, 2017, 7 (10): : 3475 - 3488
  • [37] The relationship between regional and local species diversity in marine benthic communities: A global perspective
    Witman, JD
    Etter, RJ
    Smith, F
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (44) : 15664 - 15669
  • [38] FROM LOCAL TO GLOBAL UNMIXING OF HYPERSPECTRAL IMAGES TO REVEAL SPECTRAL VARIABILITY
    Tochon, G.
    Drumetz, L.
    Veganzones, M. A.
    Dalla Mura, M.
    Chanussot, J.
    2016 8TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2016,
  • [39] Effects of Spatial Resolution, Mapping Window Size, and Spectral Species Clustering on Remote Sensing of Plant Beta Diversity Using biodivMapR and Hyperspectral Imagery
    Robertson, Kevin M. M.
    Simonson, Eli
    Ramirez-Bullon, Natali
    Poulter, Benjamin
    Carter, Richard
    JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2023, 128 (07)
  • [40] Remote sensing of β-diversity: Evidence from plant communities in a semi-natural system
    Hoffmann, Samuel
    Schmitt, Thomas M.
    Chiarucci, Alessandro
    Irl, Severin D. H.
    Rocchini, Duccio
    Vetaas, Ole R.
    Tanase, Mihai A.
    Mermoz, Stephane
    Bouvet, Alexandre
    Beierkuhnlein, Carl
    APPLIED VEGETATION SCIENCE, 2019, 22 (01) : 13 - 26