From local spectral species to global spectral communities: A benchmark for ecosystem diversity estimate by remote sensing

被引:49
|
作者
Rocchini, Duccio [1 ,2 ]
Salvatori, Nicole [3 ,4 ]
Beierkuhnlein, Carl [5 ]
Chiarucci, Alessandro [1 ]
de Boissieu, Florian [6 ]
Foerster, Michael [7 ]
Garzon-Lopez, Carol X. [8 ]
Gillespie, Thomas W. [9 ]
Hauffe, Heidi C. [10 ]
He, Kate S. [11 ]
Kleinschmit, Birgit [7 ]
Lenoir, Jonathan [12 ]
Malavasi, Marco [2 ]
Moudry, Vitezslav [2 ]
Nagendra, Harini [13 ]
Payne, Davnah [14 ]
Simova, Petra [2 ]
Torresani, Michele [15 ,17 ]
Wegmann, Martin [16 ]
Feret, Jean-Baptiste [6 ]
机构
[1] Alma Mater Studiorum Univ Bologna, Dept Biol Geol & Environm Sci, Via Irnerio 42, I-40126 Bologna, Italy
[2] Czech Univ Life Sci Prague, Fac Environm Sci, Dept Appl Geoinformat & Spatial Planning, Kamycka 129, Prague 16500, Suchdol, Czech Republic
[3] Univ Udine, Dept Agrifood Anim & Environm Sci DI4A, Via Sci 206, I-33100 Udine, UD, Italy
[4] Univ Trieste, Dept Life Sci, Via Giorgieri 5, I-34100 Trieste, TS, Italy
[5] Univ Bayreuth, BayCEER, Biogeog, Univ Str 30, D-95440 Bayreuth, Germany
[6] IRSTEA Montpellier, UMR TETIS, 500 Rue JF Breton, F-34093 Montpellier 5, France
[7] Tech Univ Berlin, Dept Geoinformat Environm Planning, Str 17 Juni 145, D-10623 Berlin, Germany
[8] Univ los Andes, Ecol & Vegetat Physiol Grp EcoFiv, Cr 1E 18A, Bogota, Colombia
[9] Univ Calif Los Angeles, Dept Geog, Los Angeles, CA 90095 USA
[10] Fdn Edmund Mach, Res & Innovat Ctr, Dept Biodivers & Mol Ecol, Via E Mach 1, I-38010 San Michele All Adige, TN, Italy
[11] Murray State Univ, Dept Biol Sci, Murray, KY 42071 USA
[12] Univ Picardie Jules Verne, UR Ecol & Dynam Syst Anthropises, EDYSAN, UMR 7058 CNRS UPJV, 1 Rue Louvels, F-80037 Amiens 1, France
[13] Azim Premji Univ, PES Inst Technol Campus, Pixel Pk,B Block,Hosur Rd, Bangalore 560100, Karnataka, India
[14] Univ Bern, Inst Plant Sci, GMBA Off, Altenbergrain 21, CH-3013 Bern, Switzerland
[15] Free Univ Bolzano Bozen, Fac Sci & Technol, Piazza Univ,Univ Pl 1, I-39100 Bolzano, Bozen, Italy
[16] Univ Wurzburg, Dept Remote Sensing, Remote Sensing & Biodivers Res Grp, Wurzburg, Germany
[17] Univ Trento, Dept Civil Environm & Mech Engn, Atmospher Phys Grp, Via Mesiano 77, I-38123 Trento, Italy
基金
欧盟地平线“2020”;
关键词
Biodiversity; Ecological informatics; Modelling; Remote sensing; Satellite imagery; BETA-DIVERSITY; CONSISTENT TERMINOLOGY; TROPICAL FOREST; BIODIVERSITY; PATTERNS; POPULATION; DISTANCE;
D O I
10.1016/j.ecoinf.2020.101195
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
In the light of unprecedented change in global biodiversity, real-time and accurate ecosystem and biodiversity assessments are becoming increasingly essential. Nevertheless, estimation of biodiversity using ecological field data can be difficult for several reasons. For instance, for very large areas, it is challenging to collect data that provide reliable information. Some of these restrictions in Earth observation can be avoided through the use of remote sensing approaches. Various studies have estimated biodiversity on the basis of the Spectral Variation Hypothesis (SVH). According to this hypothesis, spectral heterogeneity over the different pixel units of a spatial grid reflects a higher niche heterogeneity, allowing more organisms to coexist. Recently, the spectral species concept has been derived, following the consideration that spectral heterogeneity at a landscape scale corresponds to a combination of subspaces sharing a similar spectral signature. With the use of high resolution remote sensing data, on a local scale, these subspaces can be identified as separate spectral entities, the so called "spectral species". Our approach extends this concept over wide spatial extents and to a higher level of biological organization. We applied this method to MODIS imagery data across Europe. Obviously, in this case, a spectral species identified by MODIS is not associated to a single plant species in the field but rather to a species assemblage, habitat, or ecosystem. Based on such spectral information, we propose a straightforward method to derive a-(local relative abundance and richness of spectral species) and fl-diversity (turnover of spectral species) maps over wide geographical areas.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Remote sensing of species diversity using Landsat 8 spectral variables
    Madonsela, Sabelo
    Cho, Moses Azong
    Ramoelo, Abel
    Mutanga, Onisimo
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2017, 133 : 116 - 127
  • [2] Use of a remote sensing method to estimate the influence of anthropogenic factors on the spectral reflectance of plant species
    Krezhova, Dora D.
    Yanev, Tony K.
    SIX INTERNATIONAL CONFERENCE OF THE BALKAN PHYSICAL UNION, 2007, 899 : 738 - 738
  • [3] SPECTRAL BAND DISCRIMINATION FOR SPECIES OBSERVED FROM HYPERSPECTRAL REMOTE SENSING
    Dudeni, N.
    Debba, P.
    Cho, M.
    Mathieu, R.
    2009 FIRST WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING, 2009, : 70 - +
  • [4] LOCAL SPECTRAL-SPATIAL CLUSTERING FOR REMOTE SENSING IMAGERY
    Ma, Ailong
    Zhong, Yanfei
    Jiao, Hongzan
    Zhang, Liangpei
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 5130 - 5133
  • [5] NON-LOCAL SPARSE SPECTRAL UNMIXING FOR REMOTE SENSING IMAGERY
    Feng, Ruyi
    Zhong, Yanfei
    Zhang, Liangpei
    2012 4TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING (WHISPERS), 2012,
  • [6] Remote sensing of spectral diversity: A new methodological approach to account for spatio-temporal dissimilarities between plant communities
    Rossi, Christian
    Kneubuehler, Mathias
    Schuetz, Martin
    Schaepman, Michael E.
    Haller, Rudolf M.
    Risch, Anita C.
    ECOLOGICAL INDICATORS, 2021, 130
  • [7] Detecting Overlapping Communities from Local Spectral Subspaces
    He, Kun
    Sun, Yiwei
    Bindel, David
    Hopcroft, John
    Li, Yixuan
    2015 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2015, : 769 - 774
  • [8] Remote sensing based global vegetation products: From vegetation spectral index to fusion datasets
    Qiu S.
    Hu T.
    Hu Y.
    Ding Z.
    Liu Y.
    Peng J.
    Dili Xuebao/Acta Geographica Sinica, 2022, 77 (05): : 1102 - 1119
  • [9] Spectral dependency of optical backscattering by marine particles from satellite remote sensing of the global ocean
    Loisel, Hubert
    Nicolas, Jean-Marc
    Sciandra, Antoine
    Stramski, Dariusz
    Poteau, Antoine
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2006, 111 (C9)
  • [10] High spectral resolution remote sensing of forest canopy lignin, nitrogen, and ecosystem processes
    Martin, ME
    Aber, JD
    ECOLOGICAL APPLICATIONS, 1997, 7 (02) : 431 - 443