Symmetric alcoved polytopes

被引:0
|
作者
Werner, Annette [1 ]
Yu, Josephine [2 ]
机构
[1] Goethe Univ Frankfurt, Inst Math, D-60054 Frankfurt, Germany
[2] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2014年 / 21卷 / 01期
基金
美国国家科学基金会;
关键词
SYSTEMS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Generalized alcoved polytopes are polytopes whose facet normals are roots in a given root system. We call a set of points in an alcoved polytope a generating set if there does not exist a strictly smaller alcoved polytope containing it. The type A alcoved polytopes are precisely the tropical polytopes that are also convex in the usual sense. In this case the tropical generators form a generating set. We show that for any root system other than F-4, every alcoved polytope invariant under the natural Weyl group action has a generating set of cardinality equal to the Coxeter number of the root system.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] On a Generalization of Symmetric Edge Polytopes to Regular Matroids
    D'Ali, Alessio
    Juhnke-Kubitzke, Martina
    Koch, Melissa
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (14) : 10844 - 10864
  • [32] On the gamma-vector of symmetric edge polytopes
    D'ali, Alessio
    Juhnke-Kubitzke, Martina
    Koehne, Daniel
    Venturello, Lorenzo
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2023, 37 (02) : 487 - 515
  • [33] Facets and facet subgraphs of symmetric edge polytopes
    Chen, Tianran
    Davis, Robert
    Korchevskaia, Evgeniia
    DISCRETE APPLIED MATHEMATICS, 2023, 328 : 139 - 153
  • [34] HYPERPLANE TRANSVERSALS OF HOMOTHETICAL, CENTRALLY SYMMETRIC POLYTOPES
    Horst Martini
    Anita Schöbel
    Periodica Mathematica Hungarica, 2000, 39 (1-3) : 73 - 81
  • [35] THE NUMBER OF FACES OF CENTRALLY-SYMMETRIC POLYTOPES
    KALAI, G
    GRAPHS AND COMBINATORICS, 1989, 5 (04) : 389 - 391
  • [36] Symmetric Graphs from Polytopes of High Rank
    Mixer, Mark
    Schulte, Egon
    GRAPHS AND COMBINATORICS, 2012, 28 (06) : 843 - 857
  • [37] A Lower Bound Theorem for Centrally Symmetric Simplicial Polytopes
    Klee, Steven
    Nevo, Eran
    Novik, Isabella
    Zhen, Hailun
    DISCRETE & COMPUTATIONAL GEOMETRY, 2019, 61 (03) : 541 - 561
  • [38] Global optimality of quadratic minimization over symmetric polytopes
    Jeyakumar, V.
    Huy, N. Q.
    OPTIMIZATION, 2007, 56 (5-6) : 633 - 640
  • [39] On Kalai's Conjectures Concerning Centrally Symmetric Polytopes
    Sanyal, Raman
    Werner, Axel
    Ziegler, Guenter M.
    DISCRETE & COMPUTATIONAL GEOMETRY, 2009, 41 (02) : 183 - 198
  • [40] On toric h-vectors of centrally symmetric polytopes
    A'Campo-Neuen, Annette
    ARCHIV DER MATHEMATIK, 2006, 87 (03) : 217 - 226