Symmetric alcoved polytopes

被引:0
|
作者
Werner, Annette [1 ]
Yu, Josephine [2 ]
机构
[1] Goethe Univ Frankfurt, Inst Math, D-60054 Frankfurt, Germany
[2] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2014年 / 21卷 / 01期
基金
美国国家科学基金会;
关键词
SYSTEMS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Generalized alcoved polytopes are polytopes whose facet normals are roots in a given root system. We call a set of points in an alcoved polytope a generating set if there does not exist a strictly smaller alcoved polytope containing it. The type A alcoved polytopes are precisely the tropical polytopes that are also convex in the usual sense. In this case the tropical generators form a generating set. We show that for any root system other than F-4, every alcoved polytope invariant under the natural Weyl group action has a generating set of cardinality equal to the Coxeter number of the root system.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] THE Lp ALEKSANDROV PROBLEM FOR ORIGIN-SYMMETRIC POLYTOPES
    Zhao, Yiming
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (10) : 4477 - 4492
  • [42] Riesz bases of exponentials for convex polytopes with symmetric faces
    Debernardi, Alberto
    Lev, Nir
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2022, 24 (08) : 3017 - 3029
  • [43] Facets of Symmetric Edge Polytopes for Graphs with Few Edges
    Braun, Benjamin
    Bruegge, Kaitlin
    JOURNAL OF INTEGER SEQUENCES, 2023, 26 (07)
  • [44] Infinite Families of Hypertopes from Centrally Symmetric Polytopes
    Piedade, Claudio Alexandre
    ELECTRONIC JOURNAL OF COMBINATORICS, 2023, 30 (02):
  • [45] Smooth Centrally Symmetric Polytopes in Dimension 3 are IDP
    Beck, Matthias
    Haase, Christian
    Higashitani, Akihiro
    Hofscheier, Johannes
    Jochemko, Katharina
    Katthan, Lukas
    Michalek, Mateusz
    ANNALS OF COMBINATORICS, 2019, 23 (02) : 255 - 262
  • [46] Lattice polytopes from Schur and symmetric Grothendieck polynomials
    Bayer, Margaret
    Goeckner, Bennet
    Hong, Su Ji
    McAllister, Tyrrell
    Olsen, McCabe
    Pinckney, Casey
    Vega, Julianne
    Yip, Martha
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (02):
  • [47] Classification of pseudo-symmetric simplicial reflexive polytopes
    Nill, Benjamin
    ALGEBRAIC AND GEOMETRIC COMBINATORICS, 2006, 423 : 269 - 282
  • [48] Smooth Centrally Symmetric Polytopes in Dimension 3 are IDP
    Matthias Beck
    Christian Haase
    Akihiro Higashitani
    Johannes Hofscheier
    Katharina Jochemko
    Lukas Katthän
    Mateusz Michałek
    Annals of Combinatorics, 2019, 23 : 255 - 262
  • [49] On toric h-vectors of centrally symmetric polytopes
    Annette A’Campo–Neuen
    Archiv der Mathematik, 2006, 87 : 217 - 226
  • [50] Symmetric inequalities and their composition for asymmetric travelling salesman polytopes
    Queyranne, M
    Wang, YG
    MATHEMATICS OF OPERATIONS RESEARCH, 1995, 20 (04) : 838 - 863