On a Generalization of Symmetric Edge Polytopes to Regular Matroids

被引:0
|
作者
D'Ali, Alessio [1 ,2 ]
Juhnke-Kubitzke, Martina [2 ]
Koch, Melissa [3 ]
机构
[1] Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy
[2] Univ Osnabruck, Dept Math, D-49076 Osnabruck, Germany
[3] Univ Osnabruck, Dept Comp Sci, D-49090 Osnabruck, Germany
关键词
D O I
10.1093/imrn/rnae107
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Starting from any finite simple graph, one can build a reflexive polytope known as a symmetric edge polytope. The first goal of this paper is to show that symmetric edge polytopes are intrinsically matroidal objects: more precisely, we prove that two symmetric edge polytopes are unimodularly equivalent precisely when they share the same graphical matroid. The second goal is to show that one can construct a generalized symmetric edge polytope starting from every regular matroid. Just like in the usual case, we are able to find combinatorial ways to describe the facets and an explicit regular unimodular triangulation of any such polytope. Finally, we show that the Ehrhart theory of the polar of a given generalized symmetric edge polytope is tightly linked to the structure of the lattice of flows of the dual regular matroid.
引用
收藏
页码:10844 / 10864
页数:21
相关论文
共 50 条
  • [1] Extended Formulations for Independence Polytopes of Regular Matroids
    Kaibel, Volker
    Lee, Jon
    Walter, Matthias
    Weltge, Stefan
    GRAPHS AND COMBINATORICS, 2016, 32 (05) : 1931 - 1944
  • [2] Extended Formulations for Independence Polytopes of Regular Matroids
    Volker Kaibel
    Jon Lee
    Matthias Walter
    Stefan Weltge
    Graphs and Combinatorics, 2016, 32 : 1931 - 1944
  • [3] Correction to: Extended Formulations for Independence Polytopes of Regular Matroids
    Volker Kaibel
    Jon Lee
    Matthias Walter
    Stefan Weltge
    Graphs and Combinatorics, 2020, 36 : 177 - 179
  • [4] A symmetric generalization of π-regular rings
    Danchev, Peter, V
    RICERCHE DI MATEMATICA, 2024, 73 (01) : 179 - 190
  • [5] ARITHMETIC ASPECTS OF SYMMETRIC EDGE POLYTOPES
    Higashitani, Akihiro
    Jochemko, Katharina
    Michalek, Mailusz
    MATHEMATIKA, 2019, 65 (03) : 763 - 784
  • [6] Many faces of symmetric edge polytopes
    D'Ali, Alessio
    Delucchi, Emanuele
    Michalek, Mateusz
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (03):
  • [7] FACETS AND FACET SUBGRAPHS OF SYMMETRIC EDGE POLYTOPES
    Chen, Tianran
    Davis, Robert
    Korchevskaia, Evgeniia
    arXiv, 2021,
  • [8] On the gamma-vector of symmetric edge polytopes
    D'ali, Alessio
    Juhnke-Kubitzke, Martina
    Koehne, Daniel
    Venturello, Lorenzo
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2023, 37 (02) : 487 - 515
  • [9] Facets and facet subgraphs of symmetric edge polytopes
    Chen, Tianran
    Davis, Robert
    Korchevskaia, Evgeniia
    DISCRETE APPLIED MATHEMATICS, 2023, 328 : 139 - 153
  • [10] Subgraph polytopes and independence polytopes of count matroids
    Conforti, Michele
    Kaibel, Volker
    Walter, Matthias
    Weltge, Stefan
    OPERATIONS RESEARCH LETTERS, 2015, 43 (05) : 457 - 460