Extended Formulations for Independence Polytopes of Regular Matroids

被引:0
|
作者
Volker Kaibel
Jon Lee
Matthias Walter
Stefan Weltge
机构
[1] Institut für Mathematische Optimierung,Department of Industrial and Operations Engineering
[2] Otto-von-Guericke-Universität Magdeburg,undefined
[3] The University of Michigan,undefined
来源
Graphs and Combinatorics | 2016年 / 32卷
关键词
Extended formulation; Independence polytope; Regular matroid; Decomposition; 52Bxx;
D O I
暂无
中图分类号
学科分类号
摘要
We show that the independence polytope of every regular matroid has an extended formulation of size quadratic in the size of its ground set. This generalizes a similar statement for (co-)graphic matroids, which is a simple consequence of Martin’s extended formulation for the spanning-tree polytope. In our construction, we make use of Seymour’s decomposition theorem for regular matroids. As a consequence, the extended formulations can be computed in polynomial time.
引用
收藏
页码:1931 / 1944
页数:13
相关论文
共 50 条
  • [1] Extended Formulations for Independence Polytopes of Regular Matroids
    Kaibel, Volker
    Lee, Jon
    Walter, Matthias
    Weltge, Stefan
    GRAPHS AND COMBINATORICS, 2016, 32 (05) : 1931 - 1944
  • [2] Correction to: Extended Formulations for Independence Polytopes of Regular Matroids
    Volker Kaibel
    Jon Lee
    Matthias Walter
    Stefan Weltge
    Graphs and Combinatorics, 2020, 36 : 177 - 179
  • [3] Extended Formulations for Independence Polytopes of Regular Matroids (vol 32, pg 1931, 2016)
    Kaibel, Volker
    Lee, Jon
    Walter, Matthias
    Weltge, Stefan
    GRAPHS AND COMBINATORICS, 2020, 36 (01) : 177 - 179
  • [4] Subgraph polytopes and independence polytopes of count matroids
    Conforti, Michele
    Kaibel, Volker
    Walter, Matthias
    Weltge, Stefan
    OPERATIONS RESEARCH LETTERS, 2015, 43 (05) : 457 - 460
  • [5] On a Generalization of Symmetric Edge Polytopes to Regular Matroids
    D'Ali, Alessio
    Juhnke-Kubitzke, Martina
    Koch, Melissa
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (14) : 10844 - 10864
  • [6] Extended formulations for sparsity matroids
    Satoru Iwata
    Naoyuki Kamiyama
    Naoki Katoh
    Shuji Kijima
    Yoshio Okamoto
    Mathematical Programming, 2016, 158 : 565 - 574
  • [7] Extended formulations for sparsity matroids
    Iwata, Satoru
    Kamiyama, Naoyuki
    Katoh, Naoki
    Kijima, Shuji
    Okamoto, Yoshio
    MATHEMATICAL PROGRAMMING, 2016, 158 (1-2) : 565 - 574
  • [8] Ordered matroids and regular independence systems
    Cerdeira, JO
    Barcia, P
    DISCRETE MATHEMATICS, 1996, 154 (1-3) : 255 - 261
  • [9] Small Extended Formulations for Cyclic Polytopes
    Bogomolov, Yuri
    Fiorini, Samuel
    Maksimenko, Aleksandr
    Pashkovich, Kanstantsin
    DISCRETE & COMPUTATIONAL GEOMETRY, 2015, 53 (04) : 809 - 816
  • [10] Small Extended Formulations for Cyclic Polytopes
    Yuri Bogomolov
    Samuel Fiorini
    Aleksandr Maksimenko
    Kanstantsin Pashkovich
    Discrete & Computational Geometry, 2015, 53 : 809 - 816