Extended Formulations for Independence Polytopes of Regular Matroids

被引:0
|
作者
Volker Kaibel
Jon Lee
Matthias Walter
Stefan Weltge
机构
[1] Institut für Mathematische Optimierung,Department of Industrial and Operations Engineering
[2] Otto-von-Guericke-Universität Magdeburg,undefined
[3] The University of Michigan,undefined
来源
Graphs and Combinatorics | 2016年 / 32卷
关键词
Extended formulation; Independence polytope; Regular matroid; Decomposition; 52Bxx;
D O I
暂无
中图分类号
学科分类号
摘要
We show that the independence polytope of every regular matroid has an extended formulation of size quadratic in the size of its ground set. This generalizes a similar statement for (co-)graphic matroids, which is a simple consequence of Martin’s extended formulation for the spanning-tree polytope. In our construction, we make use of Seymour’s decomposition theorem for regular matroids. As a consequence, the extended formulations can be computed in polynomial time.
引用
收藏
页码:1931 / 1944
页数:13
相关论文
共 50 条
  • [41] ALGEBRAIC FLOWS IN REGULAR MATROIDS
    HAMACHER, H
    DISCRETE APPLIED MATHEMATICS, 1980, 2 (01) : 27 - 38
  • [42] Extended formulations for stable set polytopes of graphs without two disjoint odd cycles
    Michele Conforti
    Samuel Fiorini
    Tony Huynh
    Stefan Weltge
    Mathematical Programming, 2022, 192 : 547 - 566
  • [43] Extended Formulations for Stable Set Polytopes of Graphs Without Two Disjoint Odd Cycles
    Conforti, Michele
    Fiorini, Samuel
    Huynh, Tony
    Weltge, Stefan
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, IPCO 2020, 2020, 12125 : 104 - 116
  • [44] Circuits and Cocircuits in Regular Matroids
    Dillon Mayhew
    Graphs and Combinatorics, 2006, 22 : 383 - 389
  • [45] CHROMATIC NUMBER OF REGULAR MATROIDS
    LINDSTROM, B
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1978, 24 (03) : 367 - 369
  • [46] Dominating circuits in regular matroids
    McGuinness, Sean
    ADVANCES IN APPLIED MATHEMATICS, 2014, 53 : 72 - 111
  • [47] Smaller Extended Formulations for Spanning Tree Polytopes in Minor-closed Classes and Beyond
    Aprile, Manuel
    Fiorini, Samuel
    Huynh, Tony
    Joret, Gwenael
    Wood, David R.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (04):
  • [48] Extended formulations for stable set polytopes of graphs without two disjoint odd cycles
    Conforti, Michele
    Fiorini, Samuel
    Huynh, Tony
    Weltge, Stefan
    MATHEMATICAL PROGRAMMING, 2022, 192 (1-2) : 547 - 566
  • [49] Spanning Circuits in Regular Matroids
    Fomin, Fedor V.
    Golovach, Petr A.
    Lokshtanov, Daniel
    Saurabh, Saket
    PROCEEDINGS OF THE TWENTY-EIGHTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2017, : 1433 - 1441
  • [50] Circuits and cocircuits in regular matroids
    Mayhew, Dillon
    GRAPHS AND COMBINATORICS, 2006, 22 (03) : 383 - 389