Performance optimization of hygrothermal simulations - Parameter optimization of iterative solvers

被引:0
|
作者
Nicolai, Andreas [1 ]
Ruisinger, Ulrich [1 ]
机构
[1] Tech Univ Dresden, Inst Bauklimat, Fak Architektur, D-01062 Dresden, Germany
关键词
hygrothermal simulation; performance optimization; parameter optimization; iterative equation solvers; convergence factors;
D O I
10.1002/bapi.202000033
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Despite continuously enhanced computer hardware, running dynamic 3D hygrothermal simulations may still be a time-consuming process. The duration of simulations may be reduced by user-selected numeric parameters. However, the actual impact of parameters like maximum Krylov subspace, convergence coefficients etc. proves difficult to estimate. In the article different methods of reducing simulation speed are applied to two example cases. Starting with a grid sensitivity study the scaling of effort for different direct and iterative linear equation system solvers is discussed. Further, we investigate parameters influencing the iterative equation system solvers GMRES and BiCGStab in combination with ILU preconditioners. The tests are done with the software DELPHIN 6. The article concludes with recommendation for suitable initial parameter selection based on system size and a short methodology on how to optimize parameters based on collected solver metrics.
引用
收藏
页码:289 / 299
页数:10
相关论文
共 50 条
  • [41] Parameter optimization in molecular dynamics simulations using a genetic algorithm
    Angibaud, L.
    Briquet, L.
    Philipp, P.
    Wirtz, T.
    Kieffer, J.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2011, 269 (14): : 1559 - 1563
  • [42] Knowledge-Infused Optimization for Parameter Selection in Numerical Simulations
    Meissner, Julia
    Goeddeke, Dominik
    Herschel, Melanie
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PT VI, PAKDD 2024, 2024, 14650 : 16 - 28
  • [43] Performance Analysis and Parameter Optimization of a Planetary Mixer
    Yang, Mingjin
    Li, Xiwen
    Shi, Tielin
    Yeng, Shuzi
    ADVANCES IN ENGINEERING DESIGN AND OPTIMIZATION, PTS 1 AND 2, 2011, 37-38 : 858 - +
  • [44] Parameter optimization of sealing performance for packer rubber
    Zhang, Fuying
    Shui, Hao Che
    Zhang, Yufei
    INDUSTRIAL LUBRICATION AND TRIBOLOGY, 2019, 71 (05) : 664 - 671
  • [45] Robust Rank Reduction Algorithm with Iterative Parameter Optimization and Vector Perturbation
    Li, Peng
    Feng, Jiao
    de Lamare, Rodrigo C.
    ALGORITHMS, 2015, 8 (03): : 573 - 589
  • [46] Retroviral Iterative Genetic Algorithm for Real Parameter Function Optimization Problems
    Moreira, Renato Simoes
    Monteiro, Glauber Duarte
    Teixeira, Otavio Noura
    Soares, Atila Siqueira
    Limao de Oliveira, Roberto Celio
    ADVANCES IN COMPUTATION AND INTELLIGENCE, 2010, 6382 : 220 - +
  • [47] Motion optimization based on hierarchical iterative parameter learning for complicated trajectory
    Guo, Yi
    Huang, TianYi
    Huang, Haohui
    Zhao, Huangting
    Liu, Weitao
    ROBOTIC INTELLIGENCE AND AUTOMATION, 2024, 44 (04): : 594 - 606
  • [48] Performance of Iterative Solvers in the Discrete Dipole Approximation
    Yurkin, Maxim A.
    2016 URSI INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC THEORY (EMTS), 2016, : 488 - 491
  • [49] Performance issues for iterative solvers in device simulation
    Fan, Q
    Forsyth, PA
    McMacken, JRF
    Tang, WP
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1996, 17 (01): : 100 - 117
  • [50] Batched Sparse Iterative Solvers for Computational Chemistry Simulations on GPUs
    Aggarwal, Isha
    Kashi, Aditya
    Nayak, Pratik
    Balos, Cody J.
    Woodward, Carol S.
    Anzt, Hartwig
    PROCEEDINGS OF SCALA 2021: 12TH WORKSHOP ON LATEST ADVANCES IN SCALABLE ALGORITHMS FOR LARGE- SCALE SYSTEMS, 2021, : 35 - 43