Parameter optimization in molecular dynamics simulations using a genetic algorithm

被引:19
|
作者
Angibaud, L. [1 ]
Briquet, L. [1 ]
Philipp, P. [1 ]
Wirtz, T. [1 ]
Kieffer, J. [2 ]
机构
[1] Ctr Rech Publ Gabriel Lippmann, Dept Sci & Anal Mat SAM, L-4422 Belvaux, Luxembourg
[2] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Molecular dynamics; Genetic algorithm; Force field; Parametrization; Silicon; TRANSFORMATION; DENSITY; SILICA;
D O I
10.1016/j.nimb.2010.11.024
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
In this work, we introduce a genetic algorithm for the parameterization of the reactive force field developed by Kieffer [12-16]. This potential includes directional covalent bonds and dispersion terms. Important features of this force field for simulating systems that undergo significant structural reorganization are (i) the ability to account for the redistribution of electron density upon ionization, formation, or breaking of bonds, through a charge transfer term, and (ii) the fact that the angular constraints dynamically adjust when a change in the coordination number of an atom occurs. In this paper, we present the implementation of the genetic algorithm into the existing code as well as the algorithm efficiency and preliminary results on Si-Si force field optimization. The parameters obtained by this method will be compared to existing parameter sets obtained by a trial-and-error process. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1559 / 1563
页数:5
相关论文
共 50 条
  • [1] Genetic Algorithm Approach for the Optimization of Protein Antifreeze Activity Using Molecular Simulations
    Kozuch, Daniel J.
    Stillinger, Frank H.
    Debenedetti, Pablo G.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2020, 16 (12) : 7866 - 7873
  • [2] Chaogate Parameter Optimization using Bayesian Optimization and Genetic Algorithm
    Acharya, Rabin Yu
    Charlot, Noeloikeau F.
    Alam, Md Mahbub
    Ganji, Fatemeh
    Gauthier, Daniel
    Forte, Domenic
    PROCEEDINGS OF THE 2021 TWENTY SECOND INTERNATIONAL SYMPOSIUM ON QUALITY ELECTRONIC DESIGN (ISQED 2021), 2021, : 426 - 431
  • [3] Interconnect Stack Parameter Optimization Using Genetic Algorithm
    Nam, Jiwoo
    Hyun, Daijoon
    2023 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS, 2023,
  • [4] Parameter optimization of an embedded watermark using a genetic algorithm
    ElShafie, Dahlia R.
    Kharma, Nawwaf
    Ward, Rabab
    2008 3RD INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS, CONTROL AND SIGNAL PROCESSING, VOLS 1-3, 2008, : 1263 - +
  • [5] Parameter optimization of thermoelectric modules using a genetic algorithm
    Heghmanns, Alexander
    Beitelschmidt, Michael
    APPLIED ENERGY, 2015, 155 : 447 - 454
  • [6] Parameter Optimization of Magnetic Dipole Model Using Genetic Algorithm
    Chen, Qinkai
    Zhang, Yunfei
    Yang, Zhan
    Fan, Xinjian
    2024 IEEE 3RD INTERNATIONAL CONFERENCE ON MICRO/NANO SENSORS FOR AI, HEALTHCARE, AND ROBOTICS, NSENS, 2024, : 5 - 9
  • [7] Parameter optimization of Tersoff interatomic potentials using a genetic algorithm
    Saito, Y
    Sasaki, N
    Moriya, H
    Kagatsume, A
    Noro, S
    JSME INTERNATIONAL JOURNAL SERIES A-SOLID MECHANICS AND MATERIAL ENGINEERING, 2001, 44 (02) : 207 - 213
  • [8] DRIIS: MapReduce Parameter Optimization of Hadoop Using Genetic Algorithm
    Anusha, R. J.
    RamaParvathy, L.
    INTERNATIONAL JOURNAL OF COOPERATIVE INFORMATION SYSTEMS, 2022, 31 (1-2)
  • [9] Deep Reinforcement Learning using Genetic Algorithm for Parameter Optimization
    Sehgal, Adarsh
    Hung Manh La
    Louis, Sushil J.
    Hai Nguyen
    2019 THIRD IEEE INTERNATIONAL CONFERENCE ON ROBOTIC COMPUTING (IRC 2019), 2019, : 596 - 601
  • [10] Parameter Optimization of PEMFC with Genetic Algorithm
    Bhatt, Puja
    Agarwal, Neha
    Chakraborty, Uday K.
    NEW MATHEMATICS AND NATURAL COMPUTATION, 2016, 12 (03) : 241 - 249