Parameter optimization in molecular dynamics simulations using a genetic algorithm

被引:19
|
作者
Angibaud, L. [1 ]
Briquet, L. [1 ]
Philipp, P. [1 ]
Wirtz, T. [1 ]
Kieffer, J. [2 ]
机构
[1] Ctr Rech Publ Gabriel Lippmann, Dept Sci & Anal Mat SAM, L-4422 Belvaux, Luxembourg
[2] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Molecular dynamics; Genetic algorithm; Force field; Parametrization; Silicon; TRANSFORMATION; DENSITY; SILICA;
D O I
10.1016/j.nimb.2010.11.024
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
In this work, we introduce a genetic algorithm for the parameterization of the reactive force field developed by Kieffer [12-16]. This potential includes directional covalent bonds and dispersion terms. Important features of this force field for simulating systems that undergo significant structural reorganization are (i) the ability to account for the redistribution of electron density upon ionization, formation, or breaking of bonds, through a charge transfer term, and (ii) the fact that the angular constraints dynamically adjust when a change in the coordination number of an atom occurs. In this paper, we present the implementation of the genetic algorithm into the existing code as well as the algorithm efficiency and preliminary results on Si-Si force field optimization. The parameters obtained by this method will be compared to existing parameter sets obtained by a trial-and-error process. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1559 / 1563
页数:5
相关论文
共 50 条
  • [31] Parameter optimization for charge equilibration method in molecular simulations
    Bourasseau, E.
    Maillet, J. -B.
    Shock Compression of Condensed Matter - 2005, Pts 1 and 2, 2006, 845 : 565 - 568
  • [32] Portfolio Optimization Using Genetic Algorithm and Harmony Search Algorithm with Varying Operators and Parameter Values
    Lai, Kee Huong
    Siow, Woon Jeng
    Kaw, Ahmad Aniq bin Mohd Nooramin
    Ong, Pauline
    Zainuddin, Zarita
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND TECHNOLOGY 2018 (MATHTECH 2018): INNOVATIVE TECHNOLOGIES FOR MATHEMATICS & MATHEMATICS FOR TECHNOLOGICAL INNOVATION, 2019, 2184
  • [33] Molecular Dynamics/Order Parameter Extrapolation for Bionanosystem Simulations
    Miao, Yinglong
    Ortoleva, Peter J.
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2009, 30 (03) : 423 - 437
  • [34] Parameter optimization of support vector machine for classification using niche genetic algorithm
    Zhu, Ning
    Feng, Zhi-Gang
    Wang, Qi
    Nanjing Li Gong Daxue Xuebao/Journal of Nanjing University of Science and Technology, 2009, 33 (01): : 16 - 20
  • [35] Parameter optimization of 2-DOF-PID controller using genetic algorithm
    Oh, Tae-Seok
    Lee, Wang-Heon
    Kim, Il-Hwan
    INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2006, 24 (3-4) : 131 - 145
  • [36] Model development for lactic acid fermentation and parameter optimization using genetic algorithm
    Lin, JQ
    Lee, SM
    Koo, YM
    JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, 2004, 14 (06) : 1163 - 1169
  • [37] Optimization of the Design Parameter for Standing Wave Thermoacoustic Refrigerator using Genetic Algorithm
    Ong, Jing Yuan
    King, Yeong Jin
    Saw, Lip Huat
    Theng, Kai Keng
    INTERNATIONAL CONFERENCE ON SUSTAINABLE ENERGY AND GREEN TECHNOLOGY 2018, 2019, 268
  • [38] A directional crossover (DX) operator for real parameter optimization using genetic algorithm
    Amit Kumar Das
    Dilip Kumar Pratihar
    Applied Intelligence, 2019, 49 : 1841 - 1865
  • [39] A directional crossover (DX) operator for real parameter optimization using genetic algorithm
    Das, Amit Kumar
    Pratihar, Dilip Kumar
    APPLIED INTELLIGENCE, 2019, 49 (05) : 1841 - 1865
  • [40] A hybrid algorithm for parallel molecular dynamics simulations
    Mangiardi, Chris M.
    Meyer, R.
    COMPUTER PHYSICS COMMUNICATIONS, 2017, 219 : 196 - 208