Parameter optimization in molecular dynamics simulations using a genetic algorithm

被引:19
|
作者
Angibaud, L. [1 ]
Briquet, L. [1 ]
Philipp, P. [1 ]
Wirtz, T. [1 ]
Kieffer, J. [2 ]
机构
[1] Ctr Rech Publ Gabriel Lippmann, Dept Sci & Anal Mat SAM, L-4422 Belvaux, Luxembourg
[2] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Molecular dynamics; Genetic algorithm; Force field; Parametrization; Silicon; TRANSFORMATION; DENSITY; SILICA;
D O I
10.1016/j.nimb.2010.11.024
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
In this work, we introduce a genetic algorithm for the parameterization of the reactive force field developed by Kieffer [12-16]. This potential includes directional covalent bonds and dispersion terms. Important features of this force field for simulating systems that undergo significant structural reorganization are (i) the ability to account for the redistribution of electron density upon ionization, formation, or breaking of bonds, through a charge transfer term, and (ii) the fact that the angular constraints dynamically adjust when a change in the coordination number of an atom occurs. In this paper, we present the implementation of the genetic algorithm into the existing code as well as the algorithm efficiency and preliminary results on Si-Si force field optimization. The parameters obtained by this method will be compared to existing parameter sets obtained by a trial-and-error process. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1559 / 1563
页数:5
相关论文
共 50 条
  • [41] Algorithm for molecular dynamics simulations of spin liquids
    Omelyan, IP
    Mryglod, IM
    Folk, R
    PHYSICAL REVIEW LETTERS, 2001, 86 (05) : 898 - 901
  • [42] Genetic Algorithm Based PID Parameter Optimization for Longitudinal Dynamics of a Fixed Wing Mini UAV
    Ulus, Saban
    Eski, Ikbal
    PROCEEDINGS OF I4SDG WORKSHOP 2021: IFTOMM FOR SUSTAINABLE DEVELOPMENT GOALS, 2022, 108 : 325 - 334
  • [43] Enhanced sampling method in molecular simulations using genetic algorithm for biomolecular systems
    Sakae, Yoshitake
    Straub, John E.
    Okamoto, Yuko
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2019, 40 (02) : 475 - 481
  • [44] Algorithm optimization in molecular dynamics simulation
    Wang, Di-Bao
    Hsiao, Fei-Bin
    Chuang, Cheng-Hsin
    Lee, Yung-Chun
    COMPUTER PHYSICS COMMUNICATIONS, 2007, 177 (07) : 551 - 559
  • [45] The Application of Chaos Genetic Algorithm in the PID Parameter Optimization
    Wu, Tiebin
    Cheng, Yun
    Tan, Jiafan
    Zhou, Taoyun
    2008 3rd International Conference on Intelligent System and Knowledge Engineering, Vols 1 and 2, 2008, : 230 - 234
  • [46] Parameter optimization for a PEMFC model with a hybrid genetic algorithm
    Mo, Zhi-Jun
    Zhu, Xin-Jian
    Wei, Ling-Yun
    Cao, Guang-Yi
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2006, 30 (08) : 585 - 597
  • [47] Optimization for parameter of PID based on DNA genetic algorithm
    Huang, YR
    Chen, XQ
    Hu, YH
    PROCEEDINGS OF THE 2005 INTERNATIONAL CONFERENCE ON NEURAL NETWORKS AND BRAIN, VOLS 1-3, 2005, : 859 - 861
  • [48] Parameter optimization of a genetic algorithm for structural damage detection
    Carlin, RA
    Garcia, E
    PROCEEDINGS OF THE 14TH INTERNATIONAL MODAL ANALYSIS CONFERENCE, VOLS I & II, 1996, 2768 : 1292 - 1298
  • [49] Parameter optimization of pulse generator based on genetic algorithm
    Xu Hai
    Song Haoji
    Chen Yanhe
    Wang Xin
    2024 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION, ICMA 2024, 2024, : 1213 - 1218
  • [50] A genetic algorithm for combined parameter and tolerance design optimization
    Chirdchid, S
    Mazouz, AK
    IEEE ICIT' 02: 2002 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY, VOLS I AND II, PROCEEDINGS, 2002, : 1223 - 1228