Performance optimization of hygrothermal simulations - Parameter optimization of iterative solvers

被引:0
|
作者
Nicolai, Andreas [1 ]
Ruisinger, Ulrich [1 ]
机构
[1] Tech Univ Dresden, Inst Bauklimat, Fak Architektur, D-01062 Dresden, Germany
关键词
hygrothermal simulation; performance optimization; parameter optimization; iterative equation solvers; convergence factors;
D O I
10.1002/bapi.202000033
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Despite continuously enhanced computer hardware, running dynamic 3D hygrothermal simulations may still be a time-consuming process. The duration of simulations may be reduced by user-selected numeric parameters. However, the actual impact of parameters like maximum Krylov subspace, convergence coefficients etc. proves difficult to estimate. In the article different methods of reducing simulation speed are applied to two example cases. Starting with a grid sensitivity study the scaling of effort for different direct and iterative linear equation system solvers is discussed. Further, we investigate parameters influencing the iterative equation system solvers GMRES and BiCGStab in combination with ILU preconditioners. The tests are done with the software DELPHIN 6. The article concludes with recommendation for suitable initial parameter selection based on system size and a short methodology on how to optimize parameters based on collected solver metrics.
引用
收藏
页码:289 / 299
页数:10
相关论文
共 50 条
  • [31] MEMORY ASPECTS AND PERFORMANCE OF ITERATIVE SOLVERS
    POMMERELL, C
    FICHTNER, W
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1994, 15 (02): : 460 - 473
  • [32] Parallel computing based parameter auto-tuning algorithm for optimization solvers
    Shao, Z. (zjshao@iipc.zju.edu.cn), 2013, Materials China (64):
  • [33] Performance Prediction for Parallel Iterative Solvers
    V. Blanco
    P. González
    J. C. Cabaleiro
    D. B. Heras
    T. F. Pena
    J. J. Pombo
    F. F. Rivera
    The Journal of Supercomputing, 2004, 28 : 177 - 191
  • [34] Performance prediction for parallel iterative solvers
    Blanco, V
    González, P
    Cabaleiro, JC
    Heras, DB
    Pena, TF
    Pombo, JJ
    Rivera, FF
    COMPUTATIONAL SCIENCE-ICCS 2002, PT II, PROCEEDINGS, 2002, 2330 : 923 - 932
  • [35] SSMR Preconditioned Linear Iterative Solvers for Electromagnetic Simulations
    Nakashima, N.
    Fujino, S.
    2018 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS-TOYAMA), 2018, : 1258 - 1264
  • [36] Parameter-free optimization algorithm for iterative wavefront shaping
    Zhao, Qi
    Woo, Chi Man
    Li, Huanhao
    Zhong, Tianting
    Yu, Zhipeng
    Lai, Puxiang
    OPTICS LETTERS, 2021, 46 (12) : 2880 - 2883
  • [37] Iterative optimization algorithm with parameter estimation for the ambulance location problem
    Sun Hoon Kim
    Young Hoon Lee
    Health Care Management Science, 2016, 19 : 362 - 382
  • [38] Nonlinear Iterative Optimization Process for Multichannel Remote Parameter Control
    Li, Meng
    Zhang, Yong
    SAE INTERNATIONAL JOURNAL OF VEHICLE DYNAMICS STABILITY AND NVH, 2019, 3 (03): : 221 - 235
  • [39] Iterative optimization algorithm with parameter estimation for the ambulance location problem
    Kim, Sun Hoon
    Lee, Young Hoon
    HEALTH CARE MANAGEMENT SCIENCE, 2016, 19 (04) : 362 - 382
  • [40] Symbolic Optimization with SMT Solvers
    Li, Yi
    Albarghouthi, Aws
    Kincaid, Zachary
    Gurfinkel, Arie
    Chechik, Marsha
    ACM SIGPLAN NOTICES, 2014, 49 (01) : 607 - 618