Estimates for n-widths of the Hardy-type operators (Addendum to "Improved estimates for the approximation numbers of the Hardy-type operators")

被引:6
|
作者
Lang, J [1 ]
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
关键词
approximation; Kolmogorov; Geffand and Bernstein numbers; weighted hardy-type operators; integral operators; weighted spaces;
D O I
10.1016/j.jat.2005.11.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider the Hardy-type operator T: L-p (a, b) --> L-p (a, b), -infinity <= a< b <= infinity, which is defined by (Tf)(x) = v(x) integral(x)(a) u(t) f (t) dt. It is shown that rho(n) (T) = 1/n alpha(p) integral(b)(a) u(x)v(x) + O(n(-2)), where rho(n) (T) stands for any of the following: the Kolmogorov n-width, the Gel'fand n-width, the Bernstein n-width or the nth approximation number of T. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:141 / 146
页数:6
相关论文
共 50 条
  • [41] Hardy-type inequalities for Dunkl operators with applications to many-particle Hardy inequalities
    Velicu, Andrei
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2021, 23 (06)
  • [42] Hardy-type inequalities
    Radha, R
    TAIWANESE JOURNAL OF MATHEMATICS, 2000, 4 (03): : 447 - 456
  • [43] HARDY-TYPE SPACE ESTIMATES FOR MULTILINEAR COMMUTATORS OF CALDERON-ZYGMUND OPERATORS ON NONHOMOGENEOUS METRIC MEASURE SPACE
    Chen, Jie
    Lin, Haibo
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2017, 11 (03): : 477 - 496
  • [44] HARDY-TYPE OPERATORS IN LORENTZ-TYPE SPACES DEFINED ON MEASURE SPACES
    Sun, Qinxiu
    Yu, Xiao
    Li, Hongliang
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2020, 51 (03): : 1105 - 1132
  • [45] Hardy-Type Operators in Lorentz-Type Spaces Defined on Measure Spaces
    Qinxiu Sun
    Xiao Yu
    Hongliang Li
    Indian Journal of Pure and Applied Mathematics, 2020, 51 : 1105 - 1132
  • [46] Hardy-type inequalities
    Davila, J
    Dupaigne, L
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2004, 6 (03) : 335 - 365
  • [47] On Hardy-type inequalities
    Edmunds, DE
    Hurri, R
    MATHEMATISCHE NACHRICHTEN, 1998, 194 : 23 - 33
  • [48] The supremum-involving Hardy-type operators on Lorentz-type spaces
    Sun, Qinxiu
    Yu, Xiao
    Li, Hongliang
    PORTUGALIAE MATHEMATICA, 2020, 77 (01) : 1 - 29
  • [49] Boundedness and compactness of Hardy-type integral operators on Lorentz-type spaces
    Li, Hongliang
    Sun, Qinxiu
    Yu, Xiao
    FORUM MATHEMATICUM, 2018, 30 (04) : 997 - 1011
  • [50] Hardy-type operators with general kernels and characterizations of dynamic weighted inequalities
    Saker, S. H.
    Osman, M. M.
    O'Regan, D.
    Agarwal, R. P.
    ANNALES POLONICI MATHEMATICI, 2021, 126 (01) : 55 - 78