Estimates for n-widths of the Hardy-type operators (Addendum to "Improved estimates for the approximation numbers of the Hardy-type operators")

被引:6
|
作者
Lang, J [1 ]
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
关键词
approximation; Kolmogorov; Geffand and Bernstein numbers; weighted hardy-type operators; integral operators; weighted spaces;
D O I
10.1016/j.jat.2005.11.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider the Hardy-type operator T: L-p (a, b) --> L-p (a, b), -infinity <= a< b <= infinity, which is defined by (Tf)(x) = v(x) integral(x)(a) u(t) f (t) dt. It is shown that rho(n) (T) = 1/n alpha(p) integral(b)(a) u(x)v(x) + O(n(-2)), where rho(n) (T) stands for any of the following: the Kolmogorov n-width, the Gel'fand n-width, the Bernstein n-width or the nth approximation number of T. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:141 / 146
页数:6
相关论文
共 50 条
  • [31] Weighted inequalities for Hardy-type operators involving suprema
    Gogatishvili, Amiran
    Opic, Bohumira
    Pick, Lubos
    COLLECTANEA MATHEMATICA, 2006, 57 (03) : 227 - 255
  • [32] Integral conditions for Hardy-type operators involving suprema
    Krepela, Martin
    COLLECTANEA MATHEMATICA, 2017, 68 (01) : 21 - 50
  • [33] Volterra integration operators from Hardy-type tent spaces to Hardy spaces
    Rong Hu
    Chuan Qin
    Lv Zhou
    Journal of Inequalities and Applications, 2022
  • [34] Volterra integration operators from Hardy-type tent spaces to Hardy spaces
    Hu, Rong
    Qin, Chuan
    Zhou, Lv
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2022, 2022 (01)
  • [35] Eigenfunctions of the Laplacian Satisfying Hardy-Type Estimates on Homogeneous Trees
    Rano, Sumit Kumar
    POTENTIAL ANALYSIS, 2024,
  • [36] GENERAL WEIGHTED HARDY-TYPE INEQUALITIES RELATED TO GREINER OPERATORS
    Yener, Abdullah
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2018, 48 (07) : 2405 - 2430
  • [37] MAPPING PROPERTIES OF HARDY-TYPE OPERATORS INVOLVING GENERAL FUNCTIONS
    Jain, Pankaj
    Gupta, Babita
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2017, 11 (02): : 551 - 564
  • [38] WEIGHTED HARDY-TYPE INEQUALITIES INVOLVING FRACTIONAL CALCULUS OPERATORS
    Iqbal, Sajid
    Pecaric, Josip
    Samraiz, Muhammad
    Tomovski, Zivorad
    RAD HRVATSKE AKADEMIJE ZNANOSTI I UMJETNOSTI-MATEMATICKE ZNANOSTI, 2018, 22 (534): : 77 - 91
  • [39] Hardy-type inequalities related to degenerate elliptic differential operators
    D'Ambrosio, L
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2005, 4 (03) : 451 - 486
  • [40] Isomorphic and isometric structure of the optimal domains for Hardy-type operators
    Kiwerski, Tomasz
    Kolwicz, Pawel
    Maligranda, Lech
    STUDIA MATHEMATICA, 2021, 260 (01) : 45 - 89