Estimates for n-widths of the Hardy-type operators (Addendum to "Improved estimates for the approximation numbers of the Hardy-type operators")

被引:6
|
作者
Lang, J [1 ]
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
关键词
approximation; Kolmogorov; Geffand and Bernstein numbers; weighted hardy-type operators; integral operators; weighted spaces;
D O I
10.1016/j.jat.2005.11.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider the Hardy-type operator T: L-p (a, b) --> L-p (a, b), -infinity <= a< b <= infinity, which is defined by (Tf)(x) = v(x) integral(x)(a) u(t) f (t) dt. It is shown that rho(n) (T) = 1/n alpha(p) integral(b)(a) u(x)v(x) + O(n(-2)), where rho(n) (T) stands for any of the following: the Kolmogorov n-width, the Gel'fand n-width, the Bernstein n-width or the nth approximation number of T. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:141 / 146
页数:6
相关论文
共 50 条
  • [21] Optimal Hardy-type inequalities for elliptic operators
    Devyver, Baptiste
    Fraas, Martin
    Pinchover, Yehuda
    COMPTES RENDUS MATHEMATIQUE, 2012, 350 (9-10) : 475 - 479
  • [22] Weighted Hardy-Type Operators on Nonincreasing Cones
    Sun, Qinxiu
    Li, Hongliang
    MATHEMATICAL NOTES, 2020, 107 (5-6) : 1002 - 1013
  • [23] Weak estimates of commutators generated by a class of operators with semi-(θ, N) kernel on Hardy-type spaces
    Zhou, Wei-Jun
    Ma, Bo-Lin
    Xu, Jing-Shi
    Xiangtan Daxue Ziran Kexue Xuebao/Natural Science Journal of Xiangran Unviversity, 2003, 25 (02):
  • [24] Weighted Hardy-Type Operators on Nonincreasing Cones
    Qinxiu Sun
    Hongliang Li
    Mathematical Notes, 2020, 107 : 1002 - 1013
  • [25] REVERSE HARDY-TYPE INEQUALITIES FOR SUPREMAL OPERATORS WITH MEASURES
    Mustafayev, Rza
    Unver, Tugce
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2015, 18 (04): : 1295 - 1311
  • [26] Optimal rearrangement invariant range for Hardy-type operators
    Soria, Javier
    Tradacete, Pedro
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2016, 146 (04) : 865 - 893
  • [27] Hardy-type inequalities for a new class of integral operators
    Sinnamon, G
    ANALYSIS OF DIVERGENCE: CONTROL AND MANAGEMENT OF DIVERGENT PROCESSES, 1999, : 297 - 307
  • [28] Integral conditions for Hardy-type operators involving suprema
    Martin Křepela
    Collectanea Mathematica, 2017, 68 : 21 - 50
  • [29] Convolution Algebraic Structures Defined by Hardy-Type Operators
    Miana, Pedro J.
    Royo, Juan J.
    Sanchez-Lajusticia, Luis
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2013,
  • [30] ON SOME HARDY-TYPE INEQUALITIES FOR FRACTIONAL CALCULUS OPERATORS
    Iqbal, Sajid
    Pecaric, Josip
    Samraiz, Muhammad
    Tomovski, Zivorad
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2017, 11 (02): : 438 - 457