Estimates for n-widths of the Hardy-type operators (Addendum to "Improved estimates for the approximation numbers of the Hardy-type operators")

被引:6
|
作者
Lang, J [1 ]
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
关键词
approximation; Kolmogorov; Geffand and Bernstein numbers; weighted hardy-type operators; integral operators; weighted spaces;
D O I
10.1016/j.jat.2005.11.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider the Hardy-type operator T: L-p (a, b) --> L-p (a, b), -infinity <= a< b <= infinity, which is defined by (Tf)(x) = v(x) integral(x)(a) u(t) f (t) dt. It is shown that rho(n) (T) = 1/n alpha(p) integral(b)(a) u(x)v(x) + O(n(-2)), where rho(n) (T) stands for any of the following: the Kolmogorov n-width, the Gel'fand n-width, the Bernstein n-width or the nth approximation number of T. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:141 / 146
页数:6
相关论文
共 50 条
  • [1] Improved estimates for the approximation numbers of Hardy-type operators
    Lang, J
    JOURNAL OF APPROXIMATION THEORY, 2003, 121 (01) : 61 - 70
  • [2] Hardy-type estimates for Dirac operators
    Dolbeault, Jean
    Esteban, Maria J.
    Duoandikoetxea, Javier
    Vega, Luis
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2007, 40 (06): : 885 - 900
  • [3] ADDITIVE ESTIMATES FOR DISCRETE HARDY-TYPE OPERATORS
    Kalybay, A.
    Shalginbayeva, S.
    EURASIAN MATHEMATICAL JOURNAL, 2018, 9 (02): : 44 - 53
  • [4] The approximation numbers of hardy-type operators on trees
    Evans, WD
    Harris, DJ
    Lang, J
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2001, 83 : 390 - 418
  • [5] SHARP WEAK ESTIMATES FOR HARDY-TYPE OPERATORS
    Gao, Guilian
    Hu, Xiaomin
    Zhang, Chunjie
    ANNALS OF FUNCTIONAL ANALYSIS, 2016, 7 (03): : 421 - 433
  • [6] Approximation numbers and Kolmogorov widths of Hardy-type operators in a non-homogeneous case
    Edmunds, D. E.
    Lang, J.
    MATHEMATISCHE NACHRICHTEN, 2006, 279 (07) : 727 - 742
  • [7] Two-sided estimates for the approximation numbers of Hardy-type operators in L∞ and L1
    Evans, WD
    Harris, DJ
    Lang, J
    STUDIA MATHEMATICA, 1998, 130 (02) : 171 - 192
  • [8] On the compactness and approximation numbers of Hardy-type integral operators in Lorentz spaces
    Lomakina, E
    Stepanov, V
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1996, 53 : 369 - 382
  • [9] On asymptotic behavior of the approximation numbers and estimates of Schatten-von Neumann norms of the hardy-type integral operators
    Lomakina, EN
    Stepanov, VD
    DOKLADY AKADEMII NAUK, 1999, 367 (05) : 594 - 596
  • [10] Interpolation of Operators in Hardy-Type Spaces
    Krotov, V. G.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2023, 323 (01) : 173 - 187