Photometric classification of emission line galaxies with machine-learning methods

被引:36
|
作者
Cavuoti, Stefano [1 ,2 ]
Brescia, Massimo [1 ]
D'Abrusco, Raffaele [3 ]
Longo, Giuseppe [2 ,4 ]
Paolillo, Maurizio [2 ]
机构
[1] INAF Astron Observ Capodimonte, I-80131 Naples, Italy
[2] Univ Naples Federico II, Dept Phys Sci, I-80126 Naples, Italy
[3] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA
[4] CALTECH, Pasadena, CA 91125 USA
关键词
methods: data analysis; catalogues; surveys; galaxies: active; galaxies: Seyfert; DIGITAL SKY SURVEY; STAR-FORMATION; SPECTRAL CLASSIFICATION; NEURAL-NETWORKS; HOST GALAXIES; REDSHIFTS; CLUSTERS; I;
D O I
10.1093/mnras/stt1961
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper, we discuss an application of machine-learning-based methods to the identification of candidate active galactic nucleus (AGN) from optical survey data and to the automatic classification of AGNs in broad classes. We applied four different machine-learning algorithms, namely the Multi Layer Perceptron, trained, respectively, with the Conjugate Gradient, the Scaled Conjugate Gradient, the Quasi Newton learning rules and the Support Vector Machines, to tackle the problem of the classification of emission line galaxies in different classes, mainly AGNs versus non-AGNs, obtained using optical photometry in place of the diagnostics based on line intensity ratios which are classically used in the literature. Using the same photometric features, we discuss also the behaviour of the classifiers on finer AGN classification tasks, namely Seyfert I versus Seyfert II, and Seyfert versus LINER. Furthermore, we describe the algorithms employed, the samples of spectroscopically classified galaxies used to train the algorithms, the procedure followed to select the photometric parameters and the performances of our methods in terms of multiple statistical indicators. The results of the experiments show that the application of self-adaptive data mining algorithms trained on spectroscopic data sets and applied to carefully chosen photometric parameters represents a viable alternative to the classical methods that employ time-consuming spectroscopic observations.
引用
收藏
页码:968 / 975
页数:8
相关论文
共 50 条
  • [41] Machine-learning image recognition enhances rock classification
    Al-Farisi, Omar
    Zhang, Hongtao
    Raza, Aikifa
    JPT, Journal of Petroleum Technology, 2020, 72 (10): : 63 - 64
  • [42] Comparison of Machine-Learning Classification Models for Glaucoma Management
    An, Guangzhou
    Omodaka, Kazuko
    Tsuda, Satoru
    Shiga, Yukihiro
    Takada, Naoko
    Kikawa, Tsutomu
    Nakazawa, Toru
    Yokota, Hideo
    Akiba, Masahiro
    JOURNAL OF HEALTHCARE ENGINEERING, 2018, 2018
  • [43] Texture-based classification of high-resolution precipitation forecasts with machine-learning methods
    Hamidi, Yamina
    Raynaud, Laure
    Rottner, Lucie
    Arbogast, Philippe
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2020, 146 (732) : 3014 - 3028
  • [44] Classification of Tree Species in the Process of Timber-Harvesting Operations Using Machine-Learning Methods
    Svoikin, Fedor
    Zhuk, Kirill
    Svoikin, Vladimir
    Ugryumov, Sergey
    Bacherikov, Ivan
    Iniesta, Daniela Veas
    Ryapukhin, Anatoly
    INVENTIONS, 2023, 8 (02)
  • [45] Comparative analysis of expert and machine-learning methods for classification of body cavity effusions in companion animals
    Hotz, CS
    Templeton, SJ
    Christopher, MM
    JOURNAL OF VETERINARY DIAGNOSTIC INVESTIGATION, 2005, 17 (02) : 158 - 164
  • [46] A comprehensive study of different feature selection methods and machine-learning techniques for SODAR structure classification
    Kumar, Nishant
    Soni, Kirti
    Agarwal, Ravinder
    MODELING EARTH SYSTEMS AND ENVIRONMENT, 2021, 7 (01) : 209 - 220
  • [47] A comprehensive study of different feature selection methods and machine-learning techniques for SODAR structure classification
    Nishant Kumar
    Kirti Soni
    Ravinder Agarwal
    Modeling Earth Systems and Environment, 2021, 7 : 209 - 220
  • [48] Photometric redshifts and clustering of emission line galaxies selected jointly by DES and eBOSS
    Jouvel, S.
    Delubac, T.
    Comparat, J.
    Camacho, H.
    Carnero, A.
    Abdalla, F. B.
    Kneib, J-P.
    Merson, A.
    Lima, M.
    Sobreira, F.
    da Costa, Luiz
    Prada, F.
    Zhu, G. B.
    Benoit-Levy, A.
    De La Macora, A.
    Kuropatkin, N.
    Lin, H.
    Abbott, T. M. C.
    Allam, S.
    Banerji, M.
    Bertin, E.
    Brooks, D.
    Capozzi, D.
    Kind, M. Carrasco
    Carretero, J.
    Castander, F. J.
    Cunha, C. E.
    Desai, S.
    Doel, P.
    Eifler, T. F.
    Estrada, J.
    Fausti Neto, A.
    Flaugher, B.
    Fosalba, P.
    Frieman, J.
    Gaztanaga, E.
    Gerdes, D. W.
    Gruen, D.
    Gruendl, R. A.
    Gutierrez, G.
    Honscheid, K.
    James, D. J.
    Kuehn, K.
    Lahav, O.
    Li, T. S.
    Maia, M. A. G.
    March, M.
    Marshall, J. L.
    Miquel, R.
    Ogando, R.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 469 (03) : 2771 - 2790
  • [49] Estimation of Photometric Redshifts. I. Machine-learning Inference for Pan-STARRS1 Galaxies Using Neural Networks
    Lee, Joongoo
    Shin, Min-Su
    ASTRONOMICAL JOURNAL, 2021, 162 (06):
  • [50] Machine-learning enhanced photometric analysis of the extremely bright GRB 210822A
    Angulo-Valdez, Camila
    Becerra, Rosa L.
    Pereyra, Margarita
    Garcia-Cifuentes, Keneth
    Vargas, Felipe
    Watson, Alan M.
    De Colle, Fabio
    Fraija, Nissim
    Butler, Nathaniel R.
    Dainotti, Maria G.
    Dichiara, Simone
    Lee, William H.
    Troja, Eleonora
    Bloom, Joshua S.
    Jesus Gonzalez, J.
    Kutyrev, Alexander S.
    Prochaska, J. Xavier
    Ramirez-Ruiz, Enrico
    Richer, Michael G.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 527 (03) : 8140 - 8150