Photometric classification of emission line galaxies with machine-learning methods

被引:36
|
作者
Cavuoti, Stefano [1 ,2 ]
Brescia, Massimo [1 ]
D'Abrusco, Raffaele [3 ]
Longo, Giuseppe [2 ,4 ]
Paolillo, Maurizio [2 ]
机构
[1] INAF Astron Observ Capodimonte, I-80131 Naples, Italy
[2] Univ Naples Federico II, Dept Phys Sci, I-80126 Naples, Italy
[3] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA
[4] CALTECH, Pasadena, CA 91125 USA
关键词
methods: data analysis; catalogues; surveys; galaxies: active; galaxies: Seyfert; DIGITAL SKY SURVEY; STAR-FORMATION; SPECTRAL CLASSIFICATION; NEURAL-NETWORKS; HOST GALAXIES; REDSHIFTS; CLUSTERS; I;
D O I
10.1093/mnras/stt1961
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper, we discuss an application of machine-learning-based methods to the identification of candidate active galactic nucleus (AGN) from optical survey data and to the automatic classification of AGNs in broad classes. We applied four different machine-learning algorithms, namely the Multi Layer Perceptron, trained, respectively, with the Conjugate Gradient, the Scaled Conjugate Gradient, the Quasi Newton learning rules and the Support Vector Machines, to tackle the problem of the classification of emission line galaxies in different classes, mainly AGNs versus non-AGNs, obtained using optical photometry in place of the diagnostics based on line intensity ratios which are classically used in the literature. Using the same photometric features, we discuss also the behaviour of the classifiers on finer AGN classification tasks, namely Seyfert I versus Seyfert II, and Seyfert versus LINER. Furthermore, we describe the algorithms employed, the samples of spectroscopically classified galaxies used to train the algorithms, the procedure followed to select the photometric parameters and the performances of our methods in terms of multiple statistical indicators. The results of the experiments show that the application of self-adaptive data mining algorithms trained on spectroscopic data sets and applied to carefully chosen photometric parameters represents a viable alternative to the classical methods that employ time-consuming spectroscopic observations.
引用
收藏
页码:968 / 975
页数:8
相关论文
共 50 条
  • [31] Machine-learning based classification of speech and music
    M. Kashif Saeed Khan
    Wasfi G. Al-Khatib
    Multimedia Systems, 2006, 12 : 55 - 67
  • [32] Classification of Spectra of Emission Line Stars Using Machine Learning Techniques
    Pavla Bromov
    Petr koda
    Jaroslav Vzn
    International Journal of Automation & Computing, 2014, 11 (03) : 265 - 273
  • [33] Classification of Spectra of Emission Line Stars Using Machine Learning Techniques
    Pavla Bromová
    Petr koda
    Jaroslav Vázn
    International Journal of Automation and Computing, 2014, (03) : 265 - 273
  • [34] Classification of spectra of emission line stars using machine learning techniques
    Bromová P.
    Škoda P.
    Vážný J.
    International Journal of Automation and Computing, 2014, 11 (3) : 265 - 273
  • [35] Photometric Redshifts of Emission-line Galaxies Using Ramp Filters
    Lesser, Ryan William
    Moody, J. Ward
    Steele, Jackson
    Bohman, John
    McNeff, Matthew
    Joner, Michael D.
    Barnes, Jonathan
    ASTRONOMICAL JOURNAL, 2019, 157 (03):
  • [36] Acceleration of Hyperspectral Skin Cancer Image Classification through Parallel Machine-Learning Methods
    Petracchi, Bernardo
    Torti, Emanuele
    Marenzi, Elisa
    Leporati, Francesco
    SENSORS, 2024, 24 (05)
  • [37] Methods for Automatic Machine-Learning Workflow Analysis
    Wendlinger, Lorenz
    Berndl, Emanuel
    Granitzer, Michael
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2021: APPLIED DATA SCIENCE TRACK, PT V, 2021, 12979 : 52 - 67
  • [38] Machine-Learning Methods on Noisy and Sparse Data
    Poulinakis, Konstantinos
    Drikakis, Dimitris
    Kokkinakis, Ioannis W.
    Spottswood, Stephen Michael
    MATHEMATICS, 2023, 11 (01)
  • [39] Machine-Learning Methods for Computational Science and Engineering
    Frank, Michael
    Drikakis, Dimitris
    Charissis, Vassilis
    COMPUTATION, 2020, 8 (01)
  • [40] How can machine-learning methods assist in virtual screening for hyperuricemia? A healthcare machine-learning approach
    Ichikawa, Daisuke
    Saito, Toki
    Ujita, Waka
    Oyama, Hiroshi
    JOURNAL OF BIOMEDICAL INFORMATICS, 2016, 64 : 20 - 24