Photometric classification of emission line galaxies with machine-learning methods

被引:36
|
作者
Cavuoti, Stefano [1 ,2 ]
Brescia, Massimo [1 ]
D'Abrusco, Raffaele [3 ]
Longo, Giuseppe [2 ,4 ]
Paolillo, Maurizio [2 ]
机构
[1] INAF Astron Observ Capodimonte, I-80131 Naples, Italy
[2] Univ Naples Federico II, Dept Phys Sci, I-80126 Naples, Italy
[3] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA
[4] CALTECH, Pasadena, CA 91125 USA
关键词
methods: data analysis; catalogues; surveys; galaxies: active; galaxies: Seyfert; DIGITAL SKY SURVEY; STAR-FORMATION; SPECTRAL CLASSIFICATION; NEURAL-NETWORKS; HOST GALAXIES; REDSHIFTS; CLUSTERS; I;
D O I
10.1093/mnras/stt1961
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper, we discuss an application of machine-learning-based methods to the identification of candidate active galactic nucleus (AGN) from optical survey data and to the automatic classification of AGNs in broad classes. We applied four different machine-learning algorithms, namely the Multi Layer Perceptron, trained, respectively, with the Conjugate Gradient, the Scaled Conjugate Gradient, the Quasi Newton learning rules and the Support Vector Machines, to tackle the problem of the classification of emission line galaxies in different classes, mainly AGNs versus non-AGNs, obtained using optical photometry in place of the diagnostics based on line intensity ratios which are classically used in the literature. Using the same photometric features, we discuss also the behaviour of the classifiers on finer AGN classification tasks, namely Seyfert I versus Seyfert II, and Seyfert versus LINER. Furthermore, we describe the algorithms employed, the samples of spectroscopically classified galaxies used to train the algorithms, the procedure followed to select the photometric parameters and the performances of our methods in terms of multiple statistical indicators. The results of the experiments show that the application of self-adaptive data mining algorithms trained on spectroscopic data sets and applied to carefully chosen photometric parameters represents a viable alternative to the classical methods that employ time-consuming spectroscopic observations.
引用
收藏
页码:968 / 975
页数:8
相关论文
共 50 条
  • [21] A study on several machine-learning methods for classification of malignant and benign clustered microcalcifications
    Wei, LY
    Yang, YY
    Nishikawa, RM
    Jiang, YL
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2005, 24 (03) : 371 - 380
  • [22] A Comparative Study of Machine-learning Methods for X-Ray Binary Classification
    de Beurs, Zoe L.
    Islam, N.
    Gopalan, G.
    Vrtilek, S. D.
    ASTROPHYSICAL JOURNAL, 2022, 933 (01):
  • [23] Lithuanian river ice detection and automated classification using machine-learning methods
    Bevainis, Linas
    Bielinis, Martynas
    Cesnulevicius, Agimantas
    Bautrenas, Arturas
    BALTICA, 2023, 36 (01): : 1 - 12
  • [24] SPECTRAL CLASSIFICATION OF EMISSION-LINE GALAXIES
    VEILLEUX, S
    OSTERBROCK, DE
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 1987, 63 (02): : 295 - 310
  • [25] Spectral classification of emission-line galaxies
    Dessauges-Zavadsky, M
    Pindao, M
    Maeder, A
    Kunth, D
    ASTRONOMY & ASTROPHYSICS, 2000, 355 (01): : 89 - 98
  • [26] SPECTRAL CLASSIFICATION OF EMISSION-LINE GALAXIES
    OSTERBROCK, DE
    VEILLEUX, S
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 1986, 98 (609) : 1106 - 1106
  • [27] Photometric Light Curves Classification with Machine Learning
    Gabruseva, Tatiana
    Zlobin, Sergey
    Wang, Peter
    JOURNAL OF ASTRONOMICAL INSTRUMENTATION, 2020, 9 (01)
  • [28] Machine-learning phenotypic classification of bicuspid aortopathy
    Wojnarski, Charles M.
    Roselli, Eric E.
    Idrees, Jay J.
    Zhu, Yuanjia
    Carnes, Theresa A.
    Lowry, Ashley M.
    Collier, Patrick H.
    Griffin, Brian
    Ehrlinger, John
    Blackstone, Eugene H.
    Svensson, Lars G.
    Lytle, Bruce W.
    JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, 2018, 155 (02): : 461 - +
  • [29] Machine-learning based classification of speech and music
    Khan, M. Kashif Saeed
    Al-Khatib, Wasfi G.
    MULTIMEDIA SYSTEMS, 2006, 12 (01) : 55 - 67
  • [30] Machine-Learning Classification of Pulse Waveform Quality
    Ouyoung, Te
    Weng, Wan-Ling
    Hu, Ting-Yu
    Lee, Chia-Chien
    Wu, Li-Wei
    Hsiu, Hsin
    SENSORS, 2022, 22 (22)