Photometric classification of emission line galaxies with machine-learning methods

被引:36
|
作者
Cavuoti, Stefano [1 ,2 ]
Brescia, Massimo [1 ]
D'Abrusco, Raffaele [3 ]
Longo, Giuseppe [2 ,4 ]
Paolillo, Maurizio [2 ]
机构
[1] INAF Astron Observ Capodimonte, I-80131 Naples, Italy
[2] Univ Naples Federico II, Dept Phys Sci, I-80126 Naples, Italy
[3] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA
[4] CALTECH, Pasadena, CA 91125 USA
关键词
methods: data analysis; catalogues; surveys; galaxies: active; galaxies: Seyfert; DIGITAL SKY SURVEY; STAR-FORMATION; SPECTRAL CLASSIFICATION; NEURAL-NETWORKS; HOST GALAXIES; REDSHIFTS; CLUSTERS; I;
D O I
10.1093/mnras/stt1961
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper, we discuss an application of machine-learning-based methods to the identification of candidate active galactic nucleus (AGN) from optical survey data and to the automatic classification of AGNs in broad classes. We applied four different machine-learning algorithms, namely the Multi Layer Perceptron, trained, respectively, with the Conjugate Gradient, the Scaled Conjugate Gradient, the Quasi Newton learning rules and the Support Vector Machines, to tackle the problem of the classification of emission line galaxies in different classes, mainly AGNs versus non-AGNs, obtained using optical photometry in place of the diagnostics based on line intensity ratios which are classically used in the literature. Using the same photometric features, we discuss also the behaviour of the classifiers on finer AGN classification tasks, namely Seyfert I versus Seyfert II, and Seyfert versus LINER. Furthermore, we describe the algorithms employed, the samples of spectroscopically classified galaxies used to train the algorithms, the procedure followed to select the photometric parameters and the performances of our methods in terms of multiple statistical indicators. The results of the experiments show that the application of self-adaptive data mining algorithms trained on spectroscopic data sets and applied to carefully chosen photometric parameters represents a viable alternative to the classical methods that employ time-consuming spectroscopic observations.
引用
收藏
页码:968 / 975
页数:8
相关论文
共 50 条
  • [1] Machine learning-based photometric classification of galaxies, quasars, emission-line galaxies, and stars
    Zeraatgari, Fatemeh Zahra
    Hafezianzadeh, Fatemeh
    Zhang, Yanxia
    Mei, Liquan
    Ayubinia, Ashraf
    Mosallanezhad, Amin
    Zhang, Jingyi
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 527 (03) : 4677 - 4689
  • [2] Spectral classification of LAMOST emission line galaxies based on machine learning methods
    Wang, Li-Li
    Zheng, Wen-Yan
    Rong, Li-Xia
    Yang, Guang-Jun
    Zhang, Jun-Liang
    Xie, Yan-Hong
    Wang, Wen-Bo
    Zhao, Li-Min
    NEW ASTRONOMY, 2023, 99
  • [3] Machine-learning Classifiers for Intermediate Redshift Emission-line Galaxies
    Zhang, Kai
    Schlegel, David J.
    Andrews, Brett H.
    Comparat, Johan
    Schafer, Christoph
    Vazquez Mata, Jose Antonio
    Kneib, Jean-Paul
    Yan, Renbin
    ASTROPHYSICAL JOURNAL, 2019, 883 (01):
  • [4] Benchmarking and scalability of machine-learning methods for photometric redshift estimation
    Henghes, Ben
    Pettitt, Connor
    Thiyagalingam, Jeyan
    Hey, Tony
    Lahav, Ofer
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 505 (04) : 4847 - 4856
  • [5] MEMS Accelerometers Classification Using Machine-Learning Methods
    Nevlydov, Igor
    Ponomaryova, Ganna
    Miliutina, Svitlana
    Bortnikova, Viktoriia
    2017 XIIITH INTERNATIONAL CONFERENCE ON PERSPECTIVE TECHNOLOGIES AND METHODS IN MEMS DESIGN (MEMSTECH), 2017, : 51 - 55
  • [6] A machine-learning photometric classifier for massive stars in nearby galaxies I. The method
    Maravelias, Grigoris
    Bonanos, Alceste Z.
    Tramper, Frank
    de Wit, Stephan
    Yang, Ming
    Bonfini, Paolo
    ASTRONOMY & ASTROPHYSICS, 2022, 666
  • [7] Bayesian Redshift Classification of Emission-line Galaxies with Photometric Equivalent Widths
    Leung, Andrew S.
    Acquaviva, Viviana
    Gawiser, Eric
    Ciardullo, Robin
    Komatsu, Eiichiro
    Malz, A. I.
    Zeimann, Gregory R.
    Bridge, Joanna S.
    Drory, Niv
    Feldmeier, John J.
    Finkelstein, Steven L.
    Gebhardt, Karl
    Gronwall, Caryl
    Hagen, Alex
    Hill, Gary J.
    Schneider, Donald P.
    ASTROPHYSICAL JOURNAL, 2017, 843 (02):
  • [8] Enhancing Machine-Learning Methods for Sentiment Classification of Web Data
    Wang, Zhaoxia
    Tong, Victor Joo Chuan
    Chin, Hoong Chor
    INFORMATION RETRIEVAL TECHNOLOGY, AIRS 2014, 2014, 8870 : 394 - 405
  • [9] Severity Classification of Code Smells Using Machine-Learning Methods
    Dewangan S.
    Rao R.S.
    Chowdhuri S.R.
    Gupta M.
    SN Computer Science, 4 (5)
  • [10] Classification in conservation biology: A comparison of five machine-learning methods
    Kampichler, Christian
    Wieland, Ralf
    Calme, Sophie
    Weissenberger, Holger
    Arriaga-Weiss, Stefan
    ECOLOGICAL INFORMATICS, 2010, 5 (06) : 441 - 450