A stabilized mixed finite element method for Darcy flow

被引:226
|
作者
Masud, A [1 ]
Hughes, TJR
机构
[1] Univ Illinois, Dept Civil & Mat Engn, Chicago, IL 60607 USA
[2] Stanford Univ, Div Mech & Computat, Dept Mech Engn, Stanford, CA 94305 USA
基金
美国国家航空航天局;
关键词
D O I
10.1016/S0045-7825(02)00371-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We develop new stabilized mixed finite element methods for Darcy flow. Stability and an a priori error estimate in the "stability norm" are established. A wide variety of convergent finite elements present themselves, unlike the classical Galerkin formulation which requires highly specialized elements. An interesting feature of the formulation is that there are no mesh-dependent parameters. Numerical tests confirm the theoretical results. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:4341 / 4370
页数:30
相关论文
共 50 条
  • [41] A Mixed Finite Element Method for Solving the Time-Fractional-Darcy Equation
    Wu J.
    Lin Z.
    International Journal of Applied and Computational Mathematics, 2024, 10 (2)
  • [42] Multigrid Methods for a Mixed Finite Element Method of the Darcy-Forchheimer Model
    Huang, Jian
    Chen, Long
    Rui, Hongxing
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 74 (01) : 396 - 411
  • [43] A conforming mixed finite element method for the Navier–Stokes/Darcy coupled problem
    Marco Discacciati
    Ricardo Oyarzúa
    Numerische Mathematik, 2017, 135 : 571 - 606
  • [44] Generalized multiscale approximation of a mixed finite element method with velocity elimination for Darcy flow in fractured porous media
    He, Zhengkang
    Chen, Huangxin
    Chen, Jie
    Chen, Zhangxin
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 381
  • [45] Mixed Generalized Multiscale Finite Element Method for Darcy-Forchheimer Model
    Spiridonov, Denis
    Huang, Jian
    Vasilyeva, Maria
    Huang, Yunqing
    Chung, Eric T.
    MATHEMATICS, 2019, 7 (12)
  • [46] A MIXED FINITE ELEMENT METHOD FOR DARCY'S EQUATIONS WITH PRESSURE DEPENDENT POROSITY
    Gatica, Gabriel N.
    Ruiz-Baier, Ricardo
    Tierra, Giordano
    MATHEMATICS OF COMPUTATION, 2015, 85 (297) : 1 - 33
  • [47] UNIFIED STABILIZED FINITE ELEMENT FORMULATIONS FOR THE STOKES AND THE DARCY PROBLEMS
    Badia, Santiago
    Codina, Ramon
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (03) : 1971 - 2000
  • [48] Resolution of the flow in clarifiers by using a stabilized finite element method
    Vellando, P
    Puertas, J
    Colominas, I
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2004, 44 (02) : 115 - 133
  • [49] Stabilized lowest equal-order mixed finite element method for the Oseen viscoelastic fluid flow
    Shahid Hussain
    Md. Abdullah Al Mahbub
    Nasrin Jahan Nasu
    Haibiao Zheng
    Advances in Difference Equations, 2018
  • [50] Stabilized lowest equal-order mixed finite element method for the Oseen viscoelastic fluid flow
    Hussain, Shahid
    Al Mahbub, Md. Abdullah
    Nasu, Nasrin Jahan
    Zheng, Haibiao
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,