A stabilized mixed finite element method for Darcy flow

被引:226
|
作者
Masud, A [1 ]
Hughes, TJR
机构
[1] Univ Illinois, Dept Civil & Mat Engn, Chicago, IL 60607 USA
[2] Stanford Univ, Div Mech & Computat, Dept Mech Engn, Stanford, CA 94305 USA
基金
美国国家航空航天局;
关键词
D O I
10.1016/S0045-7825(02)00371-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We develop new stabilized mixed finite element methods for Darcy flow. Stability and an a priori error estimate in the "stability norm" are established. A wide variety of convergent finite elements present themselves, unlike the classical Galerkin formulation which requires highly specialized elements. An interesting feature of the formulation is that there are no mesh-dependent parameters. Numerical tests confirm the theoretical results. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:4341 / 4370
页数:30
相关论文
共 50 条
  • [21] APPROXIMATION OF AXISYMMETRIC DARCY FLOW USING MIXED FINITE ELEMENT METHODS
    Ervin, V. J.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (03) : 1421 - 1442
  • [22] A DIVERGENCE PRESERVING CUT FINITE ELEMENT METHOD FOR DARCY FLOW
    Frachon, Thomas
    Hansbo, Peter
    Nilsson, Erik
    Zahedi, Sara
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2024, 46 (03): : A1793 - A1820
  • [23] A stabilized hybrid mixed finite element method for poroelasticity
    Niu, Chunyan
    Rui, Hongxing
    Hu, Xiaozhe
    COMPUTATIONAL GEOSCIENCES, 2021, 25 (02) : 757 - 774
  • [24] A stabilized hybrid mixed finite element method for poroelasticity
    Chunyan Niu
    Hongxing Rui
    Xiaozhe Hu
    Computational Geosciences, 2021, 25 : 757 - 774
  • [25] A robust finite element method for Darcy-Stokes flow
    Mardal, KA
    Tai, XC
    Winther, R
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 40 (05) : 1605 - 1631
  • [26] Three-Dimensional Stabilized Mixed Galerkin Method for Darcy Flow
    Ansari, Shahab U.
    Hussain, Masroor
    Rashid, Ahmar
    Mazhar, Suleman
    Ahmad, S. M.
    2015 13TH INTERNATIONAL CONFERENCE ON FRONTIERS OF INFORMATION TECHNOLOGY (FIT), 2015, : 104 - 108
  • [27] An adaptive stabilized finite element method for the Stokes-Darcy coupled problem
    Araya, Rodolfo
    Carcamo, Cristian
    Poza, Abner H.
    Vino, Eduardo
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 443
  • [28] A stabilized finite volume element method for a coupled Stokes-Darcy problem
    Li, Rui
    Li, Jian
    He, Xiaoming
    Chen, Zhangxin
    APPLIED NUMERICAL MATHEMATICS, 2018, 133 : 2 - 24
  • [29] Multigrid Methods for a Mixed Finite Element Method of the Darcy–Forchheimer Model
    Jian Huang
    Long Chen
    Hongxing Rui
    Journal of Scientific Computing, 2018, 74 : 396 - 411
  • [30] An analysis of a mixed finite element method for a Darcy-Forchheimer model
    Salas, Jose J.
    Lopez, Hilda
    Molina, Brigida
    MATHEMATICAL AND COMPUTER MODELLING, 2013, 57 (9-10) : 2325 - 2338