A stabilized mixed finite element method for Darcy flow

被引:226
|
作者
Masud, A [1 ]
Hughes, TJR
机构
[1] Univ Illinois, Dept Civil & Mat Engn, Chicago, IL 60607 USA
[2] Stanford Univ, Div Mech & Computat, Dept Mech Engn, Stanford, CA 94305 USA
基金
美国国家航空航天局;
关键词
D O I
10.1016/S0045-7825(02)00371-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We develop new stabilized mixed finite element methods for Darcy flow. Stability and an a priori error estimate in the "stability norm" are established. A wide variety of convergent finite elements present themselves, unlike the classical Galerkin formulation which requires highly specialized elements. An interesting feature of the formulation is that there are no mesh-dependent parameters. Numerical tests confirm the theoretical results. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:4341 / 4370
页数:30
相关论文
共 50 条
  • [31] Error indicators for incompressible Darcy Flow problems using Enhanced Velocity Mixed Finite Element Method
    Amanbek, Yerlan
    Singh, Gurpreet
    Pencheva, Gergina
    Wheeler, Mary F.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 363
  • [32] A MIXED FINITE ELEMENT METHOD FOR DARCY FLOW IN FRACTURED POROUS MEDIA WITH NON-MATCHING GRIDS
    D'Angelo, Carlo
    Scotti, Anna
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2012, 46 (02): : 465 - 489
  • [33] A mixed-primal finite element method for the coupling of Brinkman-Darcy flow and nonlinear transport
    Alvarez, Mario
    Gatica, Gabriel N.
    Ruiz-Baier, Ricardo
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2021, 41 (01) : 381 - 411
  • [34] Unsteady flow optimization by a stabilized finite element method
    Gao, Zhiming
    Ma, Yichen
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2010, 26 (12) : 1915 - 1933
  • [35] Adaptive mixed finite element methods for Darcy flow in fractured porous media
    Chen, Huangxin
    Salama, Amgad
    Sun, Shuyu
    WATER RESOURCES RESEARCH, 2016, 52 (10) : 7851 - 7868
  • [36] A stabilized semi-Lagrangian finite element method for natural convection in Darcy flows
    Salhi, Loubna
    El-Amrani, Mofdi
    Seaid, Mohammed
    COMPUTATIONAL AND MATHEMATICAL METHODS, 2021, 3 (06)
  • [37] A strongly conservative finite element method for the coupling of Stokes and Darcy flow
    Kanschat, G.
    Riviere, B.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (17) : 5933 - 5943
  • [38] A stabilized mixed finite element method for nearly incompressible elasticity
    Masud, A
    Xia, KM
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2005, 72 (05): : 711 - 720
  • [39] An adaptive stabilized finite element method for the Darcy's equations with pressure dependent viscosities
    Araya, Rodolfo
    Carcamo, Cristian
    Poza, Abner H.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 387
  • [40] A hybrid-mixed finite element method for single-phase Darcy flow in fractured porous media
    Fu, Guosheng
    Yang, Yang
    ADVANCES IN WATER RESOURCES, 2022, 161