Short-Term Load Forecasting using Long Short Term Memory Optimized by Genetic Algorithm

被引:1
|
作者
Zulfiqar, Muhammad [1 ]
Rasheed, Muhammad Babar [2 ]
机构
[1] Univ Engn & Technol, Dept Elect Engn, Lahore, Pakistan
[2] Univ Alcala, Escuela Politecn Super, ISG, Alcala De Henares, Spain
关键词
Long short term memory; Genetic algorithm; Electric load forecasting; Deep learning;
D O I
10.1109/iSPEC54162.2022.1003307
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In the routine operation of a smart grid (SG), accurate short-term load forecasting (STLF) is paramount. To predict short-term load more effectively, this paper proposes an integrated evolutionary deep learning strategy based on navel feature engineering (FE), long short-term memory (LSTM) network, and Genetic algorithm (GA). First, FE eradicates repetitious and irrelevant attributes to guarantee high computational efficiency. The GA is then used to optimize the parameters ( ReLU, MAPE, RMSprop batch size, Number of neurons, and Epoch) of LSTM. The optimized LSTM is used to get the actual STLF results. Furthermore, most literature studies focus on accuracy improvement. At the same time, the importance and productivity of the devised model are confined equally by its convergence rate. Historical load data from the independent system operator (ISO) New England (ISO-NE) energy sector is analyzed to validate the developed hybrid model. The MAPE of the proposed model has a small error value of 0.6710 and the shortest processing time of 159 seconds. The devised model outperforms benchmark models such as the LSTM, LSTM-PSO, LSTM-NSGA-II, and LSTM-GA in aspects of convergence rate and accuracy. In other words, the LSTM errors are effectively decreased by the GA hyperparameter optimization. These results may be helpful as a procedure to shorten the time-consuming process of hyperparameter setting.
引用
收藏
页数:5
相关论文
共 50 条
  • [11] Short-term power load forecasting using integrated methods based on long short-term memory
    ZHANG WenJie
    QIN Jian
    MEI Feng
    FU JunJie
    DAI Bo
    YU WenWu
    Science China(Technological Sciences), 2020, (04) : 614 - 624
  • [12] Short-term power load forecasting using integrated methods based on long short-term memory
    WenJie Zhang
    Jian Qin
    Feng Mei
    JunJie Fu
    Bo Dai
    WenWu Yu
    Science China Technological Sciences, 2020, 63 : 614 - 624
  • [13] Optimized Deep Stacked Long Short-Term Memory Network for Long-Term Load Forecasting
    Farrag, Tamer Ahmed
    Elattar, Ehab E.
    IEEE ACCESS, 2021, 9 : 68511 - 68522
  • [14] Improved long short-term memory network based short term load forecasting
    Cui, Jie
    Gao, Qiang
    Li, Dahua
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 4428 - 4433
  • [15] An Effective Short-Term Load Forecasting Methodology Using Convolutional Long Short Term Memory Network
    Rafi, Shafiul Hasan
    Nahid-Al Masood
    Deeba, Shohana Rahman
    PROCEEDINGS OF 2020 11TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (ICECE), 2020, : 278 - 281
  • [16] Long Short-Term Memory for Short Term Load Forecasting with Singular Spectrum Analysis and Whale Optimization Algorithm
    Zhang, Ruixiang
    Yuan, Meng
    Jin, Zhaorui
    Zhu, Ziyu
    Chen, Yuanhui
    Wang, Yu
    Sun, Yaojie
    Zhao, Longjun
    2023 5TH ASIA ENERGY AND ELECTRICAL ENGINEERING SYMPOSIUM, AEEES, 2023, : 1164 - 1170
  • [17] Adaptive Clustering Long Short-Term Memory Network for Short-Term Power Load Forecasting
    Qi, Yuanhang
    Luo, Haoyu
    Luo, Yuhui
    Liao, Rixu
    Ye, Liwei
    ENERGIES, 2023, 16 (17)
  • [18] Short-term electric power load forecasting using factor analysis and long short-term memory for smart cities
    Veeramsetty, Venkataramana
    Chandra, D. Rakesh
    Salkuti, Surender Reddy
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2021, 49 (06) : 1678 - 1703
  • [19] Short-Term Load Forecasting Method Based on Bidirectional Long Short-Term Memory Model with Stochastic Weight Averaging Algorithm
    Zhu, Qingyun
    Zeng, Shunqi
    Chen, Minghui
    Wang, Fei
    Zhang, Zhen
    ELECTRONICS, 2024, 13 (15)
  • [20] A Two-Stage Short-Term Load Forecasting Method Using Long Short-Term Memory and Multilayer Perceptron
    Xie, Yuhong
    Ueda, Yuzuru
    Sugiyama, Masakazu
    ENERGIES, 2021, 14 (18)