Short-Term Load Forecasting using Long Short Term Memory Optimized by Genetic Algorithm

被引:1
|
作者
Zulfiqar, Muhammad [1 ]
Rasheed, Muhammad Babar [2 ]
机构
[1] Univ Engn & Technol, Dept Elect Engn, Lahore, Pakistan
[2] Univ Alcala, Escuela Politecn Super, ISG, Alcala De Henares, Spain
关键词
Long short term memory; Genetic algorithm; Electric load forecasting; Deep learning;
D O I
10.1109/iSPEC54162.2022.1003307
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In the routine operation of a smart grid (SG), accurate short-term load forecasting (STLF) is paramount. To predict short-term load more effectively, this paper proposes an integrated evolutionary deep learning strategy based on navel feature engineering (FE), long short-term memory (LSTM) network, and Genetic algorithm (GA). First, FE eradicates repetitious and irrelevant attributes to guarantee high computational efficiency. The GA is then used to optimize the parameters ( ReLU, MAPE, RMSprop batch size, Number of neurons, and Epoch) of LSTM. The optimized LSTM is used to get the actual STLF results. Furthermore, most literature studies focus on accuracy improvement. At the same time, the importance and productivity of the devised model are confined equally by its convergence rate. Historical load data from the independent system operator (ISO) New England (ISO-NE) energy sector is analyzed to validate the developed hybrid model. The MAPE of the proposed model has a small error value of 0.6710 and the shortest processing time of 159 seconds. The devised model outperforms benchmark models such as the LSTM, LSTM-PSO, LSTM-NSGA-II, and LSTM-GA in aspects of convergence rate and accuracy. In other words, the LSTM errors are effectively decreased by the GA hyperparameter optimization. These results may be helpful as a procedure to shorten the time-consuming process of hyperparameter setting.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Fast Genetic Algorithm for Long Short-Term Memory Optimization
    Girsang, Abba Suganda
    Tanjung, Daniel
    ENGINEERING LETTERS, 2022, 30 (02)
  • [32] Short-Term Load Forecasting Based on Wavelet Transform and Chaotic Bat Optimization Algorithm-Long Short-Term Memory Neural Network
    Ding, Bin
    Wang, Fan
    Chen, Zhenhua
    Wang, Shizhao
    JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2022, 17 (12) : 1611 - 1615
  • [33] Short-Term Load Forecasting using optimized LSTM Networks via Improved Bat Algorithm
    Bento, Pedro
    Pombo, Jose
    Mariano, Silvio
    2018 9TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS (IS), 2018, : 351 - 357
  • [34] Hybrid long short-term memory and bidirectional multichannel network cascaded with split convolution for short-term load forecasting
    Hasanat, Syed Muhammad
    Ullah, Irshad
    Aurangzeb, Khursheed
    Rizwan, Muhammad
    Alhussein, Musaed
    Anwar, Muhammad Shahid
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 147
  • [35] Short-term forecasting electricity load by long short-term memory and reinforcement learning for optimization of hyper-parameters
    Ngoc Anh Nguyen
    Tien Dat Dang
    Elena Verdú
    Vijender Kumar Solanki
    Evolutionary Intelligence, 2023, 16 : 1729 - 1746
  • [36] Deep learning with regularized robust long- and short-term memory network for probabilistic short-term load forecasting
    Jiang, He
    Zheng, Weihua
    JOURNAL OF FORECASTING, 2022, 41 (06) : 1201 - 1216
  • [37] Short-term Load Forecasting of Distribution Network Based on Combination of Siamese Network and Long Short-term Memory Network
    Ge L.
    Zhao K.
    Sun Y.
    Wang Y.
    Niu F.
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2021, 45 (23): : 41 - 50
  • [38] Short-term forecasting electricity load by long short-term memory and reinforcement learning for optimization of hyper-parameters
    Nguyen, Ngoc Anh
    Dang, Tien Dat
    Verdu, Elena
    Solanki, Vijender Kumar
    EVOLUTIONARY INTELLIGENCE, 2023, 16 (05) : 1729 - 1746
  • [39] Short-Term Load Forecasting of Microgrid via Hybrid Support Vector Regression and Long Short-Term Memory Algorithms
    Moradzadeh, Arash
    Zakeri, Sahar
    Shoaran, Maryam
    Mohammadi-Ivatloo, Behnam
    Mohammadi, Fazel
    SUSTAINABILITY, 2020, 12 (17)
  • [40] Short term load forecasting using genetic algorithm and neural networks
    Heng, ETH
    Srinivasan, D
    Liew, AC
    PROCEEDINGS OF EMPD '98 - 1998 INTERNATIONAL CONFERENCE ON ENERGY MANAGEMENT AND POWER DELIVERY, VOLS 1 AND 2 AND SUPPLEMENT, 1998, : 576 - 581