Short-Term Load Forecasting Method Based on Bidirectional Long Short-Term Memory Model with Stochastic Weight Averaging Algorithm

被引:2
|
作者
Zhu, Qingyun [1 ]
Zeng, Shunqi [2 ]
Chen, Minghui [2 ]
Wang, Fei [2 ]
Zhang, Zhen [1 ]
机构
[1] Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China
[2] Guangdong Power Grid Co Ltd, Guangzhou Power Supply Bur, Guangzhou 510623, Peoples R China
关键词
load forecasting; feature clustering; principal component analysis; bidirectional long-short-term memory network;
D O I
10.3390/electronics13153098
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To accommodate the rapid development of the distribution network of China, it is essential to research load forecasting methods with higher accuracy and stronger generalization capabilities in order to optimize distribution system control strategies, ensure the efficient and reliable operation of the power system, and provide a stable power supply to users. In this paper, a short-term load forecasting method is proposed for low-voltage distribution substations based on the bidirectional long short-term memory (BiLSTM) model. First, principal component analysis (PCA) and the fuzzy C-means method based on a genetic algorithm (GA-FCM) are used to extract the main influencing factors and classify different types of user electricity consumption behaviors. Then, the BiLSTM forecasting model utilizing the stochastic weight averaging (SWA) algorithm to enhance generalization capability is constructed. Finally, the load data from a low-voltage distribution substation in China over recent years are selected as a case study. Compared with conventional LSTM and BiLSTM prediction models, the annual electricity load curves for various user types forecasted by the PCA-BiLSTM model are more closely aligned with actual data curves. The proposed BiLSTM forecasting model exhibits higher accuracy and can forecast user electricity consumption data that more accurately reflect real-life usage.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Integrating Long Short-Term Memory and Genetic Algorithm for Short-Term Load Forecasting
    Santra, Arpita Samanta
    Lin, Jun-Lin
    ENERGIES, 2019, 12 (11)
  • [2] Short-term Load Forecasting with Distributed Long Short-Term Memory
    Dong, Yi
    Chen, Yang
    Zhao, Xingyu
    Huang, Xiaowei
    2023 IEEE POWER & ENERGY SOCIETY INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE, ISGT, 2023,
  • [3] Hybrid Short-term Load Forecasting Method Based on Empirical Wavelet Transform and Bidirectional Long Short-term Memory Neural Networks
    Zhang, Xiaoyu
    Kuenzel, Stefanie
    Colombo, Nicolo
    Watkins, Chris
    JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, 2022, 10 (05) : 1216 - 1228
  • [4] Hybrid Short-term Load Forecasting Method Based on Empirical Wavelet Transform and Bidirectional Long Short-term Memory Neural Networks
    Xiaoyu Zhang
    Stefanie Kuenzel
    Nicolo Colombo
    Chris Watkins
    JournalofModernPowerSystemsandCleanEnergy, 2022, 10 (05) : 1216 - 1228
  • [5] Short-Term Load Forecasting using A Long Short-Term Memory Network
    Liu, Chang
    Jin, Zhijian
    Gu, Jie
    Qiu, Caiming
    2017 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE EUROPE (ISGT-EUROPE), 2017,
  • [6] Improved long short-term memory network based short term load forecasting
    Cui, Jie
    Gao, Qiang
    Li, Dahua
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 4428 - 4433
  • [7] Refining Short-Term Power Load Forecasting: An Optimized Model with Long Short-Term Memory Network
    Hu S.
    Cai W.
    Liu J.
    Shi H.
    Yu J.
    Journal of Computing and Information Technology, 2023, 31 (03) : 151 - 166
  • [8] Short-Term Load Forecasting using Long Short Term Memory Optimized by Genetic Algorithm
    Zulfiqar, Muhammad
    Rasheed, Muhammad Babar
    2022 IEEE SUSTAINABLE POWER AND ENERGY CONFERENCE (ISPEC), 2022,
  • [9] Hybrid long short-term memory and bidirectional multichannel network cascaded with split convolution for short-term load forecasting
    Hasanat, Syed Muhammad
    Ullah, Irshad
    Aurangzeb, Khursheed
    Rizwan, Muhammad
    Alhussein, Musaed
    Anwar, Muhammad Shahid
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 147
  • [10] Short-Term Power Load Forecasting Method Based on Improved Sparrow Search Algorithm, Variational Mode Decomposition, and Bidirectional Long Short-Term Memory Neural Network
    Wen, Ming
    Liu, Bo
    Zhong, Hao
    Yu, Zongchao
    Chen, Changqing
    Yang, Xian
    Dai, Xueying
    Chen, Lisi
    ENERGIES, 2024, 17 (21)