EULER CHARACTERISTICS OF BRILL-NOETHER VARIETIES

被引:9
|
作者
Chan, Melody [1 ]
Pflueger, Nathan [2 ]
机构
[1] Brown Univ, Dept Math, Box 1917, Providence, RI 02912 USA
[2] Amherst Coll, Dept Math & Stat, Amherst, MA 01002 USA
关键词
D O I
10.1090/tran/8164
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove an enumerative formula for the algebraic Euler characteristic of Brill-Noether varieties, parametrizing degree d and rank r linear series on a general genus g curve, with ramification profiles specified at up to two general points. Up to sign, this Euler characteristic is the number of standard set-valued tableaux of a certain skew shape with g labels. We use a flat degeneration via the Eisenbud-Harris theory of limit linear series, relying on moduli-theoretic advances of Osserman and Murray-Osserman; the count of set-valued tableaux is an explicit enumeration of strata of this degeneration.
引用
收藏
页码:1513 / 1533
页数:21
相关论文
共 50 条
  • [41] Brill-Noether with ramification at unassigned points
    Farkas, Gavril
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2013, 217 (10) : 1838 - 1843
  • [42] TANGENTIAL COVERS AND THE BRILL-NOETHER CONDITION
    TREIBICH, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 316 (08): : 815 - 817
  • [43] Semipositive bundles and Brill-Noether theory
    Muñoz, V
    Presas, F
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2003, 35 : 179 - 190
  • [44] A Proof of the Brill-Noether Method from Scratch
    Berardini E.
    Couvreur A.
    Lecerf G.
    ACM Communications in Computer Algebra, 2024, 57 (04): : 200 - 229
  • [45] Stability of normal bundles of Brill-Noether curves
    Coskun, Izzet
    Smith, Geoffrey
    MATHEMATISCHE ANNALEN, 2025, 391 (04) : 4997 - 5032
  • [46] Brill-Noether loci with ramification at two points
    Teixidor-I-Bigas, Montserrat
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2023, 202 (03) : 1217 - 1232
  • [47] Hodge locus and Brill-Noether type locus
    Biswas, Indranil
    Dan, Ananyo
    JOURNAL OF THE RAMANUJAN MATHEMATICAL SOCIETY, 2021, 36 (03) : 221 - 229
  • [48] Nonemptiness and smoothness of twisted Brill-Noether loci
    Hitching, George H.
    Hoff, Michael
    Newstead, Peter E.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2021, 200 (02) : 685 - 709
  • [49] Connectedness of Brill-Noether Loci via Degenerations
    Osserman, Brian
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (19) : 6162 - 6178
  • [50] Remarks on Brill-Noether divisors and Hilbert schemes
    Choi, Youngook
    Kim, Seonja
    Kim, Young Rock
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2012, 216 (02) : 377 - 384