EULER CHARACTERISTICS OF BRILL-NOETHER VARIETIES

被引:9
|
作者
Chan, Melody [1 ]
Pflueger, Nathan [2 ]
机构
[1] Brown Univ, Dept Math, Box 1917, Providence, RI 02912 USA
[2] Amherst Coll, Dept Math & Stat, Amherst, MA 01002 USA
关键词
D O I
10.1090/tran/8164
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove an enumerative formula for the algebraic Euler characteristic of Brill-Noether varieties, parametrizing degree d and rank r linear series on a general genus g curve, with ramification profiles specified at up to two general points. Up to sign, this Euler characteristic is the number of standard set-valued tableaux of a certain skew shape with g labels. We use a flat degeneration via the Eisenbud-Harris theory of limit linear series, relying on moduli-theoretic advances of Osserman and Murray-Osserman; the count of set-valued tableaux is an explicit enumeration of strata of this degeneration.
引用
收藏
页码:1513 / 1533
页数:21
相关论文
共 50 条
  • [11] Brill-Noether loci
    Teixidor i Bigas, Montserrat
    MANUSCRIPTA MATHEMATICA, 2025, 176 (01)
  • [12] ON THE BRILL-NOETHER THEOREM
    EISENBUD, D
    HARRIS, J
    LECTURE NOTES IN MATHEMATICS, 1983, 997 : 131 - 137
  • [13] Motivic classes of degeneracy loci and pointed Brill-Noether varieties
    Anderson, Dave
    Chen, Linda
    Tarasca, Nicola
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2022, 105 (03): : 1787 - 1822
  • [14] Severi varieties and Brill-Noether theory of curves on abelian surfaces
    Knutsen, Andreas Leopold
    Lelli-Chiesa, Margherita
    Mongardi, Giovanni
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 749 : 161 - 200
  • [15] Brill-Noether theory for moduli spaces of sheaves on algebraic varieties
    Costa, Laura
    Miro-Roig, Rosa Maria
    FORUM MATHEMATICUM, 2010, 22 (03) : 411 - 432
  • [16] Interpolation for Brill-Noether curves
    Larson, Eric
    Vogt, Isabel
    FORUM OF MATHEMATICS PI, 2023, 11
  • [17] Nonemptiness of Brill-Noether loci
    Brambila-Paz, L
    Mercat, V
    Newstead, PE
    Ongay, F
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2000, 11 (06) : 737 - 760
  • [18] Invariants of the Brill-Noether curve
    Castorena, Abel
    Martin, Alberto Lopez
    Bigas, Montserrat Teixidor I.
    ADVANCES IN GEOMETRY, 2017, 17 (01) : 39 - 52
  • [19] Algebraic and combinatorial Brill-Noether theory
    Caporaso, Lucia
    COMPACT MODULI SPACES AND VECTOR BUNDLES, 2012, 564 : 69 - 85
  • [20] BRILL-NOETHER ALGORITHM AND GOPPA CODES
    LEBRIGAND, D
    RISLER, JJ
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1988, 116 (02): : 231 - 253