EULER CHARACTERISTICS OF BRILL-NOETHER VARIETIES

被引:9
|
作者
Chan, Melody [1 ]
Pflueger, Nathan [2 ]
机构
[1] Brown Univ, Dept Math, Box 1917, Providence, RI 02912 USA
[2] Amherst Coll, Dept Math & Stat, Amherst, MA 01002 USA
关键词
D O I
10.1090/tran/8164
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove an enumerative formula for the algebraic Euler characteristic of Brill-Noether varieties, parametrizing degree d and rank r linear series on a general genus g curve, with ramification profiles specified at up to two general points. Up to sign, this Euler characteristic is the number of standard set-valued tableaux of a certain skew shape with g labels. We use a flat degeneration via the Eisenbud-Harris theory of limit linear series, relying on moduli-theoretic advances of Osserman and Murray-Osserman; the count of set-valued tableaux is an explicit enumeration of strata of this degeneration.
引用
收藏
页码:1513 / 1533
页数:21
相关论文
共 50 条
  • [21] A tropical proof of the Brill-Noether Theorem
    Cools, Filip
    Draisma, Jan
    Payne, Sam
    Robeva, Elina
    ADVANCES IN MATHEMATICS, 2012, 230 (02) : 759 - 776
  • [22] Brill-Noether theory on Hirzebruch surfaces
    Costa, L.
    Miro-Roig, R. M.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2010, 214 (09) : 1612 - 1622
  • [23] Brill-Noether problems in higher dimensions
    Nakashima, Tohru
    FORUM MATHEMATICUM, 2008, 20 (01) : 145 - 161
  • [24] On the Brill-Noether problem for vector bundles
    Daskalopoulos, GD
    Wentworth, RA
    FORUM MATHEMATICUM, 1999, 11 (01) : 63 - 77
  • [25] Weak Brill-Noether for rational surfaces
    Coskun, Izzet
    Huizenga, Jack
    LOCAL AND GLOBAL METHODS IN ALGEBRAIC GEOMETRY, 2018, 712 : 81 - 104
  • [26] Brill-Noether generality of binary curves
    He, Xiang
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2021, 64 (04): : 787 - 807
  • [27] Brill-Noether theory for cyclic covers
    Schwarz, Irene
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2017, 221 (10) : 2420 - 2430
  • [28] Brill-Noether theory on nodal curves
    Bhosle, Usha N.
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2007, 18 (10) : 1133 - 1150
  • [29] Brill-Noether divisors for even genus
    Choi, Youngook
    Kim, Seonja
    Kim, Young Rock
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2014, 218 (08) : 1458 - 1462
  • [30] The Brill-Noether problem and Teixidor theorem
    Mercat, V
    MANUSCRIPTA MATHEMATICA, 1999, 98 (01) : 75 - 85