Lower bound estimates for the first eigenvalue of the weighted p-Laplacian on smooth metric measure spaces

被引:31
|
作者
Wang, Yu-Zhao [1 ]
Li, Huai-Qian [2 ,3 ]
机构
[1] Shanxi Univ, Sch Math Sci, Taiyuan 030006, Shanxi, Peoples R China
[2] Sichuan Univ, Sch Math, Chengdu 610064, Peoples R China
[3] Macquarie Univ, Dept Math, N Ryde, NSW 2109, Australia
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
Eigenvalue estimate; Bakry-Emery Ricci curvature; Smooth metric measure space; Weighted p-Bochner formula; Weighted p-Laplacian; Weighted p-Reilly formula; EQUATIONS; FORMULA; MANIFOLDS; DIAMETER; THEOREMS; OPERATOR; GAP;
D O I
10.1016/j.difgeo.2015.11.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
New lower bounds of the first nonzero eigenvalue of the weighted p-Laplacian are established on compact smooth metric measure spaces with or without boundaries. Under the assumption of positive lower bound for the m-Bakry Emery Ricci curvature, the Escobar-Lichnerowicz-Reilly type estimates are proved; under the assumption of nonnegative infinity-Bakry Emery Ricci curvature and the m-Bakry-Emery Ricci curvature bounded from below by a non-positive constant, the Li Yau type lower bound estimates are given. The weighted p-Bochner formula and the weighted p-Reilly formula are derived as the key tools for the establishment of the above results. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:23 / 42
页数:20
相关论文
共 50 条
  • [31] Evolution of the First Eigenvalue of Weighted p-Laplacian along the Yamabe Flow
    Azami, Shahroud
    KYUNGPOOK MATHEMATICAL JOURNAL, 2019, 59 (02): : 341 - 352
  • [32] Eigenvalue estimates of the p-Laplacian on finite graphs
    Wang, Yu-Zhao
    Huang, Huimin
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2021, 74
  • [33] Boundedness of the first eigenvalue of the p-Laplacian
    Matei, AM
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (07) : 2183 - 2192
  • [34] The first eigenvalue of Finsler p-Laplacian
    Yin, Song-Ting
    He, Qun
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2014, 35 : 30 - 49
  • [35] ON THE FIRST EIGENVALUE OF THE NORMALIZED p-LAPLACIAN
    Crasta, Graziano
    Fragala, Ilaria
    Kawohl, Bernd
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (02) : 577 - 590
  • [36] GRADIENT ESTIMATES FOR THE WEIGHTED LICHNEROWICZ EQUATION ON SMOOTH METRIC MEASURE SPACES
    Zhao, Liang
    Chen, Gang
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2022, 52 (01) : 335 - 345
  • [37] Extrinsic upper bound of the eigenvalue for p-Laplacian
    Chen, Hang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 196
  • [38] LOWER ESTIMATE OF THE FIRST EIGENVALUE OF p-LAPLACIAN VIA HARDY INEQUALITY
    Kutev, Nikolai
    Rangelov, Tsviatko
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2019, 72 (09): : 1167 - 1176
  • [39] Optimal lower estimate for the first eigenvalue of the p-Laplacian in the Euclidean sphere
    dos Santos, Fabio R.
    Soares, Matheus N.
    EUROPEAN JOURNAL OF MATHEMATICS, 2025, 11 (01)
  • [40] LOWER ESTIMATE OF THE FIRST EIGENVALUE OF p-LAPLACIAN VIA HARDY INEQUALITY
    Fabricant, Alexander
    Kutev, Nikolai
    Rangelov, Tsviatko
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2015, 68 (05): : 561 - 568