Lower bound estimates for the first eigenvalue of the weighted p-Laplacian on smooth metric measure spaces

被引:31
|
作者
Wang, Yu-Zhao [1 ]
Li, Huai-Qian [2 ,3 ]
机构
[1] Shanxi Univ, Sch Math Sci, Taiyuan 030006, Shanxi, Peoples R China
[2] Sichuan Univ, Sch Math, Chengdu 610064, Peoples R China
[3] Macquarie Univ, Dept Math, N Ryde, NSW 2109, Australia
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
Eigenvalue estimate; Bakry-Emery Ricci curvature; Smooth metric measure space; Weighted p-Bochner formula; Weighted p-Laplacian; Weighted p-Reilly formula; EQUATIONS; FORMULA; MANIFOLDS; DIAMETER; THEOREMS; OPERATOR; GAP;
D O I
10.1016/j.difgeo.2015.11.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
New lower bounds of the first nonzero eigenvalue of the weighted p-Laplacian are established on compact smooth metric measure spaces with or without boundaries. Under the assumption of positive lower bound for the m-Bakry Emery Ricci curvature, the Escobar-Lichnerowicz-Reilly type estimates are proved; under the assumption of nonnegative infinity-Bakry Emery Ricci curvature and the m-Bakry-Emery Ricci curvature bounded from below by a non-positive constant, the Li Yau type lower bound estimates are given. The weighted p-Bochner formula and the weighted p-Reilly formula are derived as the key tools for the establishment of the above results. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:23 / 42
页数:20
相关论文
共 50 条
  • [11] Gradient Estimates and Liouville Type Theorems for a Weighted Nonlinear p-Laplacian Equation on Compact Smooth Metric Measure Spaces
    Pengyan Wang
    Canfang Duan
    Mediterranean Journal of Mathematics, 2023, 20
  • [12] Asymptotic estimates of the first eigenvalue of the p-Laplacian
    Colbois, B
    Matei, AM
    ADVANCED NONLINEAR STUDIES, 2003, 3 (02) : 207 - 217
  • [13] LOWER ROUNDS FOR THE FIRST EIGENVALUES OF THE p-LAPLACIAN AND THE WEIGHTED p-LAPLACIAN
    Sun, He-Jun
    Han, Chengyue
    Zeng, Lingzhong
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2020, 23 (02): : 585 - 596
  • [14] Estimates from below for the first eigenvalue of the p-Laplacian
    Kutev, Nikolai
    Rangelov, Tsviatko
    SIXTH INTERNATIONAL CONFERENCE NEW TRENDS IN THE APPLICATIONS OF DIFFERENTIAL EQUATIONS IN SCIENCES (NTADES 2019), 2019, 2159
  • [15] On the p-Laplacian evolution equation in metric measure spaces
    Corny, Wojciech
    Mazon, Jose M.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 283 (08)
  • [16] The overdetermined problem and lower bound estimate on the first nonzero Steklov eigenvalue of p-Laplacian
    Haiyun Deng
    Jiabin Yin
    Annali di Matematica Pura ed Applicata (1923 -), 2022, 201 : 2037 - 2053
  • [17] The overdetermined problem and lower bound estimate on the first nonzero Steklov eigenvalue of p-Laplacian
    Deng, Haiyun
    Yin, Jiabin
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2022, 201 (05) : 2037 - 2053
  • [18] Eigenvalue estimates for the weighted Laplacian on metric trees
    Naimark, K
    Solomyak, M
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2000, 80 : 690 - 724
  • [19] Eigenvalue estimate for the weighted p-Laplacian
    Lin Feng Wang
    Annali di Matematica Pura ed Applicata, 2012, 191 : 539 - 550
  • [20] Estimates for eigenvalues of weighted Laplacian and weighted p-Laplacian
    Du, Feng
    Mao, Jing
    Wang, Qiaoling
    Xia, Changyu
    HIROSHIMA MATHEMATICAL JOURNAL, 2021, 51 (03) : 335 - 353