Lower bound estimates for the first eigenvalue of the weighted p-Laplacian on smooth metric measure spaces

被引:31
|
作者
Wang, Yu-Zhao [1 ]
Li, Huai-Qian [2 ,3 ]
机构
[1] Shanxi Univ, Sch Math Sci, Taiyuan 030006, Shanxi, Peoples R China
[2] Sichuan Univ, Sch Math, Chengdu 610064, Peoples R China
[3] Macquarie Univ, Dept Math, N Ryde, NSW 2109, Australia
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
Eigenvalue estimate; Bakry-Emery Ricci curvature; Smooth metric measure space; Weighted p-Bochner formula; Weighted p-Laplacian; Weighted p-Reilly formula; EQUATIONS; FORMULA; MANIFOLDS; DIAMETER; THEOREMS; OPERATOR; GAP;
D O I
10.1016/j.difgeo.2015.11.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
New lower bounds of the first nonzero eigenvalue of the weighted p-Laplacian are established on compact smooth metric measure spaces with or without boundaries. Under the assumption of positive lower bound for the m-Bakry Emery Ricci curvature, the Escobar-Lichnerowicz-Reilly type estimates are proved; under the assumption of nonnegative infinity-Bakry Emery Ricci curvature and the m-Bakry-Emery Ricci curvature bounded from below by a non-positive constant, the Li Yau type lower bound estimates are given. The weighted p-Bochner formula and the weighted p-Reilly formula are derived as the key tools for the establishment of the above results. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:23 / 42
页数:20
相关论文
共 50 条