Factorization dynamics and Coxeter-Toda lattices

被引:36
|
作者
Hoffmann, T
Kellendonk, J
Kutz, N
Reshetikhin, N
机构
[1] Tech Univ Berlin, Fachbereich Math, D-10623 Berlin, Germany
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
关键词
D O I
10.1007/s002200000212
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is shown that the factorization relation on simple Lie groups with standard Poisson Lie structure restricted to Coxeter symplectic leaves gives an integrable dynamical system. This system can be regarded as a discretization of the Toda flow. In case of SLn the integrals of the factorization dynamics are integrals of the relativistic Toda system. A substantial part of the paper is devoted to the description of symplectic leaves in simple complex Lie groups, its Borel subgroups and their doubles.
引用
收藏
页码:297 / 321
页数:25
相关论文
共 50 条
  • [1] Factorization Dynamics and Coxeter--Toda Lattices
    Tim Hoffmann
    Johannes Kellendonk
    Nadja Kutz
    Nicolai Reshetikhin
    Communications in Mathematical Physics, 2000, 212 : 297 - 321
  • [2] A NON-LOCAL POISSON BRACKET FOR COXETER-TODA LATTICES
    Chuno, Eber
    COLLOQUIUM MATHEMATICUM, 2020, 161 (01) : 67 - 88
  • [3] Lusztig Factorization Dynamics of the Full Kostant–Toda Lattices
    Nicholas M. Ercolani
    Jonathan Ramalheira-Tsu
    Mathematical Physics, Analysis and Geometry, 2023, 26
  • [4] Lusztig Factorization Dynamics of the Full Kostant-Toda Lattices
    Ercolani, Nicholas M.
    Ramalheira-Tsu, Jonathan
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2023, 26 (01)
  • [5] Generalized Bafscklund-Darboux transformations for Coxeter-Toda flows from a cluster algebra perspective
    Gekhtman, Michael
    Shapiro, Michael
    Vainshtein, Alek
    ACTA MATHEMATICA, 2011, 206 (02) : 245 - 310
  • [6] Group factorization, moment matrices, and Toda lattices
    Adler, M
    vanMoerbeke, P
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 1997, 1997 (12) : 555 - 572
  • [7] Integrable dynamics of Toda type on square and triangular lattices
    Santini, P. M.
    Doliwa, A.
    Nieszporski, M.
    PHYSICAL REVIEW E, 2008, 77 (05):
  • [8] Semidiscrete Toda lattices
    S. V. Smirnov
    Theoretical and Mathematical Physics, 2012, 172 : 1217 - 1231
  • [9] Semidiscrete Toda lattices
    Smirnov, S. V.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2012, 172 (03) : 1217 - 1231
  • [10] Super toda lattices
    Acta Appl Math, 1-3 (297-298):