Factorization dynamics and Coxeter-Toda lattices

被引:36
|
作者
Hoffmann, T
Kellendonk, J
Kutz, N
Reshetikhin, N
机构
[1] Tech Univ Berlin, Fachbereich Math, D-10623 Berlin, Germany
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
关键词
D O I
10.1007/s002200000212
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is shown that the factorization relation on simple Lie groups with standard Poisson Lie structure restricted to Coxeter symplectic leaves gives an integrable dynamical system. This system can be regarded as a discretization of the Toda flow. In case of SLn the integrals of the factorization dynamics are integrals of the relativistic Toda system. A substantial part of the paper is devoted to the description of symplectic leaves in simple complex Lie groups, its Borel subgroups and their doubles.
引用
收藏
页码:297 / 321
页数:25
相关论文
共 50 条
  • [31] FLAG MANIFOLDS AND TODA-LATTICES
    FLASCHKA, H
    HAINE, L
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1991, 312 (03): : 255 - 258
  • [32] Discrete Toda lattices and the Laplace method
    V. L. Vereschagin
    Theoretical and Mathematical Physics, 2009, 160 : 1229 - 1237
  • [33] Regularization of Toda lattices by Hamiltonian reduction
    Feher, L
    Tsutsui, I
    JOURNAL OF GEOMETRY AND PHYSICS, 1997, 21 (02) : 97 - 135
  • [34] Elementary Toda orbits and integrable lattices
    Faybusovich, L
    Gekhtman, M
    JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (05) : 2905 - 2921
  • [35] Solutions to the hierarchy of the periodic Toda lattices
    Trlifaj, L
    INVERSE AND ALGEBRAIC QUANTUM SCATTERING THEORY, 1997, 488 : 227 - 236
  • [36] Energy control of nonhomogeneous Toda lattices
    Firdaus E. Udwadia
    Harshavardhan Mylapilli
    Nonlinear Dynamics, 2015, 81 : 1355 - 1380
  • [37] Discrete Toda lattices and the Laplace method
    Vereschagin, V. L.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2009, 160 (03) : 1229 - 1237
  • [38] ON THE BI-HAMILTONIAN STRUCTURE OF TODA AND RELATIVISTIC TODA-LATTICES
    SURIS, YB
    PHYSICS LETTERS A, 1993, 180 (06) : 419 - 429
  • [39] SIGNED GRAPHS, ROOT LATTICES, AND COXETER GROUPS
    CAMERON, PJ
    SEIDEL, JJ
    TSARANOV, SV
    JOURNAL OF ALGEBRA, 1994, 164 (01) : 173 - 209
  • [40] Cayley lattices of finite Coxeter groups are bounded
    Caspard, N
    de Poly-Barbut, CL
    Morvan, M
    ADVANCES IN APPLIED MATHEMATICS, 2004, 33 (01) : 71 - 94