It is shown that the factorization relation on simple Lie groups with standard Poisson Lie structure restricted to Coxeter symplectic leaves gives an integrable dynamical system. This system can be regarded as a discretization of the Toda flow. In case of SLn the integrals of the factorization dynamics are integrals of the relativistic Toda system. A substantial part of the paper is devoted to the description of symplectic leaves in simple complex Lie groups, its Borel subgroups and their doubles.
机构:
Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, ItalyUniv Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
Santini, P. M.
Doliwa, A.
论文数: 0引用数: 0
h-index: 0
机构:
Uniwersytet Warminsko Mazurski Olsztynie, Wydziat Matemat & Informat, PL-10561 Olsztyn, PolandUniv Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
Doliwa, A.
Nieszporski, M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Warsaw, Katedra Metod Matemat Fiz, PL-00682 Warsaw, Poland
Univ Leeds, Dept Appl Math, Leeds LS2 9JT, W Yorkshire, EnglandUniv Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy