Factorization Dynamics and Coxeter--Toda Lattices

被引:0
|
作者
Tim Hoffmann
Johannes Kellendonk
Nadja Kutz
Nicolai Reshetikhin
机构
[1] Fachbereich Mathematik,
[2] Sekr. MA 8-5,undefined
[3] Technische Universität Berlin,undefined
[4] Strasse des 17. Juni 136,undefined
[5] ¶10623 Berlin,undefined
[6] Germany.¶E-mail: timh@sfb288.math.tu-berlin.de; kellen@math.tu-berlin.de; nadja@math.tu-berlin.de,undefined
[7] Department of Mathematics,undefined
[8] University of California at Berkeley,undefined
[9] Berkeley,undefined
[10] CA 94720,undefined
[11] USA.¶E-mail: reshetik@math.berkeley.edu,undefined
来源
关键词
Dynamical System; Factorization Relation; Substantial Part; Factorization Dynamic; Borel Subgroup;
D O I
暂无
中图分类号
学科分类号
摘要
It is shown that the factorization relation on simple Lie groups with standard Poisson Lie structure restricted to Coxeter symplectic leaves gives an integrable dynamical system. This system can be regarded as a discretization of the Toda flow. In case of SLn the integrals of the factorization dynamics are integrals of the relativistic Toda system. A substantial part of the paper is devoted to the description of symplectic leaves in simple complex Lie groups, its Borel subgroups and their doubles.
引用
收藏
页码:297 / 321
页数:24
相关论文
共 50 条
  • [1] Factorization dynamics and Coxeter-Toda lattices
    Hoffmann, T
    Kellendonk, J
    Kutz, N
    Reshetikhin, N
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 212 (02) : 297 - 321
  • [2] Lusztig Factorization Dynamics of the Full Kostant–Toda Lattices
    Nicholas M. Ercolani
    Jonathan Ramalheira-Tsu
    Mathematical Physics, Analysis and Geometry, 2023, 26
  • [3] Lusztig Factorization Dynamics of the Full Kostant-Toda Lattices
    Ercolani, Nicholas M.
    Ramalheira-Tsu, Jonathan
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2023, 26 (01)
  • [4] Group factorization, moment matrices, and Toda lattices
    Adler, M
    vanMoerbeke, P
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 1997, 1997 (12) : 555 - 572
  • [5] A NON-LOCAL POISSON BRACKET FOR COXETER-TODA LATTICES
    Chuno, Eber
    COLLOQUIUM MATHEMATICUM, 2020, 161 (01) : 67 - 88
  • [6] Integrable dynamics of Toda type on square and triangular lattices
    Santini, P. M.
    Doliwa, A.
    Nieszporski, M.
    PHYSICAL REVIEW E, 2008, 77 (05):
  • [7] Semidiscrete Toda lattices
    S. V. Smirnov
    Theoretical and Mathematical Physics, 2012, 172 : 1217 - 1231
  • [8] Semidiscrete Toda lattices
    Smirnov, S. V.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2012, 172 (03) : 1217 - 1231
  • [9] Super toda lattices
    Acta Appl Math, 1-3 (297-298):
  • [10] A generalization of some lattices of Coxeter
    Bergé, AM
    Martinet, J
    MATHEMATIKA, 2004, 51 (101-02) : 49 - 61