Integrable dynamics of Toda type on square and triangular lattices

被引:5
|
作者
Santini, P. M. [1 ,2 ]
Doliwa, A. [3 ]
Nieszporski, M. [4 ,5 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
[2] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy
[3] Uniwersytet Warminsko Mazurski Olsztynie, Wydziat Matemat & Informat, PL-10561 Olsztyn, Poland
[4] Univ Warsaw, Katedra Metod Matemat Fiz, PL-00682 Warsaw, Poland
[5] Univ Leeds, Dept Appl Math, Leeds LS2 9JT, W Yorkshire, England
来源
PHYSICAL REVIEW E | 2008年 / 77卷 / 05期
关键词
D O I
10.1103/PhysRevE.77.056601
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In a recent paper we constructed an integrable generalization of the Toda law on the square lattice. We construct other examples of integrable dynamics of Toda type on the square lattice, as well as on the triangular lattice, as nonlinear symmetries of the discrete Laplace equations on square and triangular lattices. We also construct the tau-function formulations and Darboux-Backlund transformations of these dynamics.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Elementary Toda orbits and integrable lattices
    Faybusovich, L
    Gekhtman, M
    JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (05) : 2905 - 2921
  • [2] Integrable generalization of the Toda law to the square lattice
    Santini, PM
    Nieszporski, M
    Doliwa, A
    PHYSICAL REVIEW E, 2004, 70 (05):
  • [3] η-pairing on square and triangular lattices
    Misu, Yutaro
    Tamura, Shun
    Tanaka, Yukio
    Hoshino, Shintaro
    PHYSICAL REVIEW B, 2023, 107 (18)
  • [4] Toda lattices and positive-entropy integrable systems
    Leo T. Butler
    Inventiones mathematicae, 2004, 158 : 515 - 549
  • [5] Toda lattices and positive-entropy integrable systems
    Butler, LT
    INVENTIONES MATHEMATICAE, 2004, 158 (03) : 515 - 549
  • [6] Bilinear Forms of Integrable Lattices Related to Toda and Lotka-Volterra Lattices
    Ken-ichi Maruno
    Wen-Xiu Ma
    Journal of Nonlinear Mathematical Physics, 2002, 9 : 127 - 139
  • [7] Three types of outflow dynamics on square and triangular lattices and universal scaling
    Kondrat, Grzegorz
    Sznajd-Weron, Katarzyna
    PHYSICAL REVIEW E, 2008, 77 (02):
  • [8] Bilinear forms of integrable lattices related to Toda and Lotka-Volterra lattices
    Maruno, K
    Ma, WX
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2002, 9 (Suppl 1) : 127 - 139
  • [9] Snakes in square, honeycomb and triangular lattices
    Kusdiantara, R.
    Susanto, H.
    NONLINEARITY, 2019, 32 (12) : 5170 - 5190
  • [10] SPIRAL SITE PERCOLATION ON THE SQUARE AND TRIANGULAR LATTICES
    SANTRA, SB
    BOSE, I
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (05): : 1105 - 1118