Integrable dynamics of Toda type on square and triangular lattices

被引:5
|
作者
Santini, P. M. [1 ,2 ]
Doliwa, A. [3 ]
Nieszporski, M. [4 ,5 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
[2] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy
[3] Uniwersytet Warminsko Mazurski Olsztynie, Wydziat Matemat & Informat, PL-10561 Olsztyn, Poland
[4] Univ Warsaw, Katedra Metod Matemat Fiz, PL-00682 Warsaw, Poland
[5] Univ Leeds, Dept Appl Math, Leeds LS2 9JT, W Yorkshire, England
来源
PHYSICAL REVIEW E | 2008年 / 77卷 / 05期
关键词
D O I
10.1103/PhysRevE.77.056601
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In a recent paper we constructed an integrable generalization of the Toda law on the square lattice. We construct other examples of integrable dynamics of Toda type on the square lattice, as well as on the triangular lattice, as nonlinear symmetries of the discrete Laplace equations on square and triangular lattices. We also construct the tau-function formulations and Darboux-Backlund transformations of these dynamics.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Toda type equations over multi-dimensional lattices
    Kamiya, Ryo
    Kanki, Masataka
    Mase, Takafumi
    Okubo, Naoto
    Tokihiro, Tetsuji
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (36)
  • [42] Integrable boundary value problems for elliptic type Toda lattice in a disk
    Guerses, Metin
    Habibullin, Ismagil
    Zheltukhin, Kostyantyn
    JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (10)
  • [43] Integrable Variants of the Toda Lattice
    Liu, Ya-Jie
    Wang, Hui Alan
    Chang, Xiang-Ke
    Hu, Xing-Biao
    Zhang, Ying-Nan
    JOURNAL OF NONLINEAR SCIENCE, 2024, 34 (05)
  • [44] Doniach phase diagram for the Kondo lattice model on square and triangular lattices
    Zhou, Ruixiang
    Zhang, Xuefeng
    Li, Gang
    PHYSICAL REVIEW RESEARCH, 2023, 5 (03):
  • [45] Numerical study of geometrical frustration. From square to triangular lattices
    Hu, Feiming
    Ma, Tianxing
    Lin, Hai-Qing
    COMPUTER PHYSICS COMMUNICATIONS, 2011, 182 (01) : 74 - 76
  • [46] Differential heat of adsorption at critical regime: square, triangular and honeycomb lattices
    Bulnes, F
    Ramirez-Pastor, AJ
    PHYSICA A, 2001, 295 (1-2): : 71 - 76
  • [47] The critical Binder cumulant for isotropic Ising models on square and triangular lattices
    Selke, W.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2007,
  • [49] The mobility of dual vortices in honeycomb, square, triangular, Kagome and dice lattices
    Jiang, Longhua
    Ye, Jinwu
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2006, 18 (29) : 6907 - 6922
  • [50] Local interactions and protein folding:: A model study on the square and triangular lattices
    Irbäck, A
    Sandelin, E
    JOURNAL OF CHEMICAL PHYSICS, 1998, 108 (05): : 2245 - 2250