Integrable dynamics of Toda type on square and triangular lattices

被引:5
|
作者
Santini, P. M. [1 ,2 ]
Doliwa, A. [3 ]
Nieszporski, M. [4 ,5 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
[2] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy
[3] Uniwersytet Warminsko Mazurski Olsztynie, Wydziat Matemat & Informat, PL-10561 Olsztyn, Poland
[4] Univ Warsaw, Katedra Metod Matemat Fiz, PL-00682 Warsaw, Poland
[5] Univ Leeds, Dept Appl Math, Leeds LS2 9JT, W Yorkshire, England
来源
PHYSICAL REVIEW E | 2008年 / 77卷 / 05期
关键词
D O I
10.1103/PhysRevE.77.056601
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In a recent paper we constructed an integrable generalization of the Toda law on the square lattice. We construct other examples of integrable dynamics of Toda type on the square lattice, as well as on the triangular lattice, as nonlinear symmetries of the discrete Laplace equations on square and triangular lattices. We also construct the tau-function formulations and Darboux-Backlund transformations of these dynamics.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Integrable discretizations for Toda-type lattice soliton equations
    Zhu, ZN
    Huang, HC
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (22): : 4171 - 4182
  • [32] The Darboux-type transformations of integrable lattices
    Doliwa, A
    REPORTS ON MATHEMATICAL PHYSICS, 2001, 48 (1-2) : 59 - 66
  • [33] Frustration effects in rapidly rotating square and triangular optical lattices
    Polak, T. P.
    Kopec, T. K.
    PHYSICAL REVIEW A, 2009, 79 (06):
  • [34] Lusztig Factorization Dynamics of the Full Kostant-Toda Lattices
    Ercolani, Nicholas M.
    Ramalheira-Tsu, Jonathan
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2023, 26 (01)
  • [35] On the Role of the Integrable Toda Model in One-Dimensional Molecular Dynamics
    Giancarlo Benettin
    Giuseppe Orsatti
    Antonio Ponno
    Journal of Statistical Physics, 190
  • [36] Preface to the special issue: Orthogonal polynomials and integrable systems, Peakons, Toda lattices and Painlevé transcendents
    Chang, Xiang-Ke
    Hu, Xing-Biao
    Szmigielski, Jacek
    PHYSICA D-NONLINEAR PHENOMENA, 2023, 453
  • [37] On the Role of the Integrable Toda Model in One-Dimensional Molecular Dynamics
    Benettin, Giancarlo
    Orsatti, Giuseppe
    Ponno, Antonio
    JOURNAL OF STATISTICAL PHYSICS, 2023, 190 (08)
  • [38] Semidiscrete Toda lattices
    S. V. Smirnov
    Theoretical and Mathematical Physics, 2012, 172 : 1217 - 1231
  • [39] Semidiscrete Toda lattices
    Smirnov, S. V.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2012, 172 (03) : 1217 - 1231
  • [40] Super toda lattices
    Acta Appl Math, 1-3 (297-298):