Identifying Zeolite Frameworks with a Machine Learning Approach

被引:35
|
作者
Yang, Shujiang [1 ]
Lach-hab, Mohammed [1 ]
Vaisman, Iosif I. [1 ,3 ]
Blaisten-Barojas, Estela [1 ,2 ]
机构
[1] George Mason Univ, Computat Mat Sci Ctr, Fairfax, VA 22030 USA
[2] George Mason Univ, Dept Computat & Data Sci, Fairfax, VA 22030 USA
[3] George Mason Univ, Dept Bioinformat & Computat Biol, Manassas, VA 20110 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2009年 / 113卷 / 52期
基金
美国国家科学基金会;
关键词
NOMENCLATURE; SUPPORT; NETS;
D O I
10.1021/jp907017u
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Zeolites are microporous Crystalline materials with highly regular framework structures consisting of molecular-sized pores and channels. The characteristic framework type of a zeolite is conventionally defined by combining information on its coordination sequences, vertex symbols, tiling, and transitivity information. Here we present a novel knowledge-based approach for zeolite framework type classification. We show the predicting abilities of a machine learning model that uses a nine-dimensional feature vector including novel topological descriptors obtained by computational geometry techniques, together with selected physical and chemical properties of zeolite crystals. Trained oil the crystallographic structures of known zeolites, this model predicts the framework types of zeolite crystals with very high accuracy.
引用
收藏
页码:21721 / 21725
页数:5
相关论文
共 50 条
  • [31] STRIDE-AI: An Approach to Identifying Vulnerabilities of Machine Learning Assets
    Mauri, Lara
    Damiani, Ernesto
    PROCEEDINGS OF THE 2021 IEEE INTERNATIONAL CONFERENCE ON CYBER SECURITY AND RESILIENCE (IEEE CSR), 2021, : 147 - 154
  • [32] Identifying the most suitable machine learning approach for a road digital twin
    Chen K.
    Eskandari Torbaghan M.
    Chu M.
    Zhang L.
    Garcia-Hernández A.
    Proceedings of the Institution of Civil Engineers: Smart Infrastructure and Construction, 2022, 174 (03) : 88 - 101
  • [33] A Machine Learning Approach for Identifying and Classifying Faults in Wireless Sensor Networks
    Warriach, Ehsan Ullah
    Aiello, Marco
    Tei, Kenji
    15TH IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING (CSE 2012) / 10TH IEEE/IFIP INTERNATIONAL CONFERENCE ON EMBEDDED AND UBIQUITOUS COMPUTING (EUC 2012), 2012, : 618 - 625
  • [34] Identifying digital capabilities in university courses: An automated machine learning approach
    Zongwen Fan
    Raymond Chiong
    Education and Information Technologies, 2023, 28 : 3937 - 3952
  • [35] A machine learning approach to identifying delirium from electronic health records
    Kim, Jae Hyun
    Hua, May
    Whittington, Robert A.
    Lee, Junghwan
    Liu, Cong
    Ta, Casey N.
    Marcantonio, Edward R.
    Goldberg, Terry E.
    Weng, Chunhua
    JAMIA OPEN, 2022, 5 (02)
  • [36] A Machine Learning Approach for Identifying Compound Words from a Sanskrit Text
    Premjith, B.
    Chandran, Chandni, V
    Bhat, Shriganesh
    Soman, K. P.
    Prabaharan, P.
    PROCEEDINGS OF THE 6TH INTERNATIONAL SANSKRIT COMPUTATIONAL LINGUISTICS SYMPOSIUM (ISCLS 2019), 2019, : 46 - 52
  • [37] Machine learning-based approach for identifying mental workload of pilots
    Mohanavelu, K.
    Poonguzhali, S.
    Janani, A.
    Vinutha, S.
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 75
  • [38] Machine Learning Approach to Identifying Depression Related Posts on Social Media
    Narynov, Sergazy
    Mukhtarkhanuly, Daniyar
    Omarov, Batyrkhan
    Kozhakhmet, Kanat
    Omarov, Bauyrzhan
    2020 20TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS), 2020, : 6 - 11
  • [39] Identifying Critical Contextual Design Cues Through a Machine Learning Approach
    Cummings, Mary L. ''Missy''
    Stimpson, Alexander
    AI MAGAZINE, 2019, 40 (04) : 28 - 39
  • [40] Melatect: A Machine Learning Approach for Identifying Malignant Melanoma in Skin Growths
    Meel, Vidushi
    Bodepudi, Asritha
    FOURTEENTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2021), 2022, 12084