Identifying Zeolite Frameworks with a Machine Learning Approach

被引:35
|
作者
Yang, Shujiang [1 ]
Lach-hab, Mohammed [1 ]
Vaisman, Iosif I. [1 ,3 ]
Blaisten-Barojas, Estela [1 ,2 ]
机构
[1] George Mason Univ, Computat Mat Sci Ctr, Fairfax, VA 22030 USA
[2] George Mason Univ, Dept Computat & Data Sci, Fairfax, VA 22030 USA
[3] George Mason Univ, Dept Bioinformat & Computat Biol, Manassas, VA 20110 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2009年 / 113卷 / 52期
基金
美国国家科学基金会;
关键词
NOMENCLATURE; SUPPORT; NETS;
D O I
10.1021/jp907017u
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Zeolites are microporous Crystalline materials with highly regular framework structures consisting of molecular-sized pores and channels. The characteristic framework type of a zeolite is conventionally defined by combining information on its coordination sequences, vertex symbols, tiling, and transitivity information. Here we present a novel knowledge-based approach for zeolite framework type classification. We show the predicting abilities of a machine learning model that uses a nine-dimensional feature vector including novel topological descriptors obtained by computational geometry techniques, together with selected physical and chemical properties of zeolite crystals. Trained oil the crystallographic structures of known zeolites, this model predicts the framework types of zeolite crystals with very high accuracy.
引用
收藏
页码:21721 / 21725
页数:5
相关论文
共 50 条
  • [11] Machine-learning approach to the design of OSDAs for zeolite beta
    Daeyaert, Frits
    Ye, Fengdan
    Deem, Michael W.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (09) : 3413 - 3418
  • [12] Machine learning approach for structure-based zeolite classification
    Carr, D. Andrew
    Lach-hab, Mohammed
    Yang, Shujiang
    Vaisman, Iosif I.
    Blaisten-Barojas, Estela
    MICROPOROUS AND MESOPOROUS MATERIALS, 2009, 117 (1-2) : 339 - 349
  • [13] Identifying Disease - Treatment Relations using Machine Learning Approach
    Keerrthega, M. C.
    Thenmozhi, D.
    FOURTH INTERNATIONAL CONFERENCE ON RECENT TRENDS IN COMPUTER SCIENCE & ENGINEERING (ICRTCSE 2016), 2016, 87 : 306 - 315
  • [14] Identifying Linguistic Markers of CEO Hubris: A Machine Learning Approach
    Akstinaite, Vita
    Garrard, Peter
    Sadler-Smith, Eugene
    BRITISH JOURNAL OF MANAGEMENT, 2022, 33 (03) : 1163 - 1178
  • [15] Identifying Fallers Based on Functional Parameters: A Machine Learning Approach
    Fahimi, F.
    Taylor, W. R.
    Dietzel, R.
    Armbrecht, G.
    Singh, N. B.
    2021 IEEE ASIA-PACIFIC CONFERENCE ON COMPUTER SCIENCE AND DATA ENGINEERING (CSDE), 2021,
  • [16] Identifying NAT Devices to Detect Shadow IT: A Machine Learning Approach
    Nassar, Reem
    Elhajj, Imad
    Kayssi, Ayman
    Salam, Samer
    2021 IEEE/ACS 18TH INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS (AICCSA), 2021,
  • [17] Identifying key factors of reading achievement: A machine learning approach
    Liu, Hao
    Yang, Dongxia
    Nie, Shangran
    Chen, Xi
    ISCIENCE, 2024, 27 (10)
  • [18] Identifying Bid Leakage In Procurement Auctions: Machine Learning Approach
    Ivanov, Dmitry
    Nesterov, Alexander
    ACM EC '19: PROCEEDINGS OF THE 2019 ACM CONFERENCE ON ECONOMICS AND COMPUTATION, 2019, : 69 - 70
  • [19] Identifying new earnings management components: a machine learning approach
    Almasarwah, Adel
    Aram, Khalid Y.
    Alhaj-Yaseen, Yaseen S.
    ACCOUNTING RESEARCH JOURNAL, 2024, 37 (04) : 418 - 435
  • [20] Identifying Distinct Subgroups of ICU Patients: A Machine Learning Approach
    Vranas, Kelly C.
    Jopling, Jeffrey K.
    Sweeney, Timothy E.
    Ramsey, Meghan C.
    Milstein, Arnold S.
    Slatore, Christopher G.
    Escobar, Gabriel J.
    Liu, Vincent X.
    CRITICAL CARE MEDICINE, 2017, 45 (10) : 1607 - 1615