Identifying Zeolite Frameworks with a Machine Learning Approach

被引:35
|
作者
Yang, Shujiang [1 ]
Lach-hab, Mohammed [1 ]
Vaisman, Iosif I. [1 ,3 ]
Blaisten-Barojas, Estela [1 ,2 ]
机构
[1] George Mason Univ, Computat Mat Sci Ctr, Fairfax, VA 22030 USA
[2] George Mason Univ, Dept Computat & Data Sci, Fairfax, VA 22030 USA
[3] George Mason Univ, Dept Bioinformat & Computat Biol, Manassas, VA 20110 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2009年 / 113卷 / 52期
基金
美国国家科学基金会;
关键词
NOMENCLATURE; SUPPORT; NETS;
D O I
10.1021/jp907017u
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Zeolites are microporous Crystalline materials with highly regular framework structures consisting of molecular-sized pores and channels. The characteristic framework type of a zeolite is conventionally defined by combining information on its coordination sequences, vertex symbols, tiling, and transitivity information. Here we present a novel knowledge-based approach for zeolite framework type classification. We show the predicting abilities of a machine learning model that uses a nine-dimensional feature vector including novel topological descriptors obtained by computational geometry techniques, together with selected physical and chemical properties of zeolite crystals. Trained oil the crystallographic structures of known zeolites, this model predicts the framework types of zeolite crystals with very high accuracy.
引用
收藏
页码:21721 / 21725
页数:5
相关论文
共 50 条
  • [21] An Evaluation of Machine Learning Frameworks
    Wafo, Franck
    Mabou, Ivan Cedric
    Heilmann, Dan
    Zengeler, Nico
    Handmann, Uwe
    PROCEEDINGS OF THE 2021 IEEE 16TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2021), 2021, : 1411 - 1416
  • [22] Machine learning potentials for metal-organic frameworks using an incremental learning approach
    Vandenhaute, Sander
    Cools-Ceuppens, Maarten
    DeKeyser, Simon
    Verstraelen, Toon
    Van Speybroeck, Veronique
    NPJ COMPUTATIONAL MATERIALS, 2023, 9 (01)
  • [23] Machine learning potentials for metal-organic frameworks using an incremental learning approach
    Sander Vandenhaute
    Maarten Cools-Ceuppens
    Simon DeKeyser
    Toon Verstraelen
    Veronique Van Speybroeck
    npj Computational Materials, 9
  • [24] Learning from main streets - A machine learning approach identifying neighborhood commercial districts
    Oh, Jean
    Hwang, Jie-Eun
    Smith, Stephen F.
    Koile, Kimberle
    INNOVATIONS IN DESIGN & DECISION SUPPORT SYSTEMS IN ARCHITECTURE AND URBAN PLANNING, 2006, : 325 - +
  • [25] Identifying neuroanatomical signatures of anorexia nervosa: a multivariate machine learning approach
    Lavagnino, L.
    Amianto, F.
    Mwangi, B.
    D'Agata, F.
    Spalatro, A.
    Zunta-Soares, G. B.
    Daga, G. Abbate
    Mortara, P.
    Fassino, S.
    Soares, J. C.
    PSYCHOLOGICAL MEDICINE, 2015, 45 (13) : 2805 - 2812
  • [26] BIOADI: a machine learning approach to identifying abbreviations and definitions in biological literature
    Kuo, Cheng-Ju
    Ling, Maurice H. T.
    Lin, Kuan-Ting
    Hsu, Chun-Nan
    BMC BIOINFORMATICS, 2009, 10
  • [27] MERCI: a machine learning approach to identifying hydroxychloroquine retinopathy using mfERG
    Habib, Faisal
    Huang, Huaxiong
    Gupta, Arvind
    Wright, Tom
    DOCUMENTA OPHTHALMOLOGICA, 2022, 145 (01) : 53 - 63
  • [28] Identifying digital capabilities in university courses: An automated machine learning approach
    Fan, Zongwen
    Chiong, Raymond
    EDUCATION AND INFORMATION TECHNOLOGIES, 2023, 28 (04) : 3937 - 3952
  • [29] Identifying Rare Diseases from Behavioural Data: A Machine Learning Approach
    MacLeod, Haley
    Yang, Shuo
    Oakes, Kim
    Connelly, Kay
    Natarajan, Sriraam
    2016 IEEE FIRST INTERNATIONAL CONFERENCE ON CONNECTED HEALTH: APPLICATIONS, SYSTEMS AND ENGINEERING TECHNOLOGIES (CHASE), 2016, : 130 - 139
  • [30] A Machine Learning Approach to Identifying Students at Risk of Dropout: A Case Study
    Lottering, Roderick
    Hans, Robert
    Lall, Manoj
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (10) : 417 - 422