An improved method for precise genome editing in zebrafish using CRISPR-Cas9 technique

被引:4
|
作者
Gasanov, Eugene V. [1 ]
Jedrychowska, Justyna [1 ,2 ]
Pastor, Michal [1 ,3 ]
Wiweger, Malgorzata [1 ]
Methner, Axel [4 ]
Korzh, Vladimir P. [1 ]
机构
[1] Int Inst Mol & Cell Biol Warsaw, Ks Trojdena Str 4, PL-02109 Warsaw, Poland
[2] Med Univ Warsaw, Postgrad Sch Mol Med, Zwirki & Wigury Str 61, PL-02091 Warsaw, Poland
[3] Polish Acad Sci, Inst Biochem & Biophys, Pawinskiego Str 5a, PL-02106 Warsaw, Poland
[4] Univ Med Ctr Mainz, Inst Mol Med, Langenbeckstr 1, D-55131 Mainz, Germany
关键词
CRISPR-Cas9; Zebrafish; Precise deletion editing; gRNAs; HRM;
D O I
10.1007/s11033-020-06125-8
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Current methods of CRISPR-Cas9-mediated site-specific mutagenesis create deletions and small insertions at the target site which are repaired by imprecise non-homologous end-joining. Targeting of the Cas9 nuclease relies on a short guide RNA (gRNA) corresponding to the genome sequence approximately at the intended site of intervention. We here propose an improved version of CRISPR-Cas9 genome editing that relies on two complementary guide RNAs instead of one. Two guide RNAs delimit the intervention site and allow the precise deletion of several nucleotides at the target site. As proof of concept, we generated heterozygous deletion mutants of the kcng4b, gdap1, and ghitm genes in the zebrafish Danio rerio using this method. A further analysis by high-resolution DNA melting demonstrated a high efficiency and a low background of unpredicted mutations. The use of two complementary gRNAs improves CRISPR-Cas9 specificity and allows the creation of predictable and precise mutations in the genome of D. rerio.
引用
收藏
页码:1951 / 1957
页数:7
相关论文
共 50 条
  • [41] An overview of designing and selection of sgRNAs for precise genome editing by the CRISPR-Cas9 system in plants
    Uniyal, Ajay Prakash
    Mansotra, Komal
    Yadav, Sudesh Kumar
    Kumar, Vinay
    3 BIOTECH, 2019, 9 (06)
  • [42] An overview of designing and selection of sgRNAs for precise genome editing by the CRISPR-Cas9 system in plants
    Ajay Prakash Uniyal
    Komal Mansotra
    Sudesh Kumar Yadav
    Vinay Kumar
    3 Biotech, 2019, 9
  • [43] Genome editing by CRISPR-Cas9 technology in Petunia hybrida
    Chopy, M.
    Morel, P.
    Bento, S. Rodrigues
    Vandenbussche, M.
    XXVI INTERNATIONAL EUCARPIA SYMPOSIUM SECTION ORNAMENTALS: EDITING NOVELTY, 2020, 1283 : 209 - 217
  • [44] CRISPR-Cas9: from Genome Editing to Cancer Research
    Chen, Si
    Sun, Heng
    Miao, Kai
    Deng, Chu-Xia
    INTERNATIONAL JOURNAL OF BIOLOGICAL SCIENCES, 2016, 12 (12): : 1427 - 1436
  • [45] CRISPR-Cas9 Genome Editing for Treatment of Atherogenic Dyslipidemia
    Chadwick, Alexandra C.
    Musunuru, Kiran
    ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2018, 38 (01) : 12 - 18
  • [46] Exploring the potential of genome editing CRISPR-Cas9 technology
    Singh, Vijai
    Braddick, Darren
    Dhar, Pawan Kumar
    GENE, 2017, 599 : 1 - 18
  • [47] A CRISPR-Cas9 System for Genome Editing of Fusarium proliferatum
    Ferrara, Massimo
    Haidukowski, Miriam
    Logrieco, Antonio F.
    Leslie, John F.
    Mule, Giuseppina
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [48] Temperature effect on CRISPR-Cas9 mediated genome editing
    Xiang, Guanghai
    Zhang, Xingying
    An, Chenrui
    Cheng, Chen
    Wang, Haoyi
    JOURNAL OF GENETICS AND GENOMICS, 2017, 44 (04) : 199 - 205
  • [49] CRISPR-Cas9 MEDIATED GENOME EDITING IN ESCHERICHIA COLI
    Al-Wawi, M. Z.
    Hassan, R. M.
    Mohamed, M. E.
    Khan, M. F.
    Magaogao, M.
    Hossain, A.
    INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES AND RESEARCH, 2019, 10 (07): : 3373 - 3377
  • [50] CRISPR-Cas9: A revolution in genome editing in rheumatic diseases
    Duroux-Richard, Isabelle
    Giovannangeli, Carine
    Apparailly, Florence
    JOINT BONE SPINE, 2017, 84 (01) : 1 - 4