An improved method for precise genome editing in zebrafish using CRISPR-Cas9 technique

被引:4
|
作者
Gasanov, Eugene V. [1 ]
Jedrychowska, Justyna [1 ,2 ]
Pastor, Michal [1 ,3 ]
Wiweger, Malgorzata [1 ]
Methner, Axel [4 ]
Korzh, Vladimir P. [1 ]
机构
[1] Int Inst Mol & Cell Biol Warsaw, Ks Trojdena Str 4, PL-02109 Warsaw, Poland
[2] Med Univ Warsaw, Postgrad Sch Mol Med, Zwirki & Wigury Str 61, PL-02091 Warsaw, Poland
[3] Polish Acad Sci, Inst Biochem & Biophys, Pawinskiego Str 5a, PL-02106 Warsaw, Poland
[4] Univ Med Ctr Mainz, Inst Mol Med, Langenbeckstr 1, D-55131 Mainz, Germany
关键词
CRISPR-Cas9; Zebrafish; Precise deletion editing; gRNAs; HRM;
D O I
10.1007/s11033-020-06125-8
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Current methods of CRISPR-Cas9-mediated site-specific mutagenesis create deletions and small insertions at the target site which are repaired by imprecise non-homologous end-joining. Targeting of the Cas9 nuclease relies on a short guide RNA (gRNA) corresponding to the genome sequence approximately at the intended site of intervention. We here propose an improved version of CRISPR-Cas9 genome editing that relies on two complementary guide RNAs instead of one. Two guide RNAs delimit the intervention site and allow the precise deletion of several nucleotides at the target site. As proof of concept, we generated heterozygous deletion mutants of the kcng4b, gdap1, and ghitm genes in the zebrafish Danio rerio using this method. A further analysis by high-resolution DNA melting demonstrated a high efficiency and a low background of unpredicted mutations. The use of two complementary gRNAs improves CRISPR-Cas9 specificity and allows the creation of predictable and precise mutations in the genome of D. rerio.
引用
收藏
页码:1951 / 1957
页数:7
相关论文
共 50 条
  • [31] Targeted Genome Editing of Virulent Phages Using CRISPR-Cas9
    Lemay, Marie-Laurence
    Renaud, Ariane C.
    Rousseau, Genevieve M.
    Moineau, Sylvain
    BIO-PROTOCOL, 2018, 8 (01):
  • [32] Conditional Genome Editing in the Mammalian Brain Using CRISPR-Cas9
    Haojie Sun
    Jie Zheng
    Ming Yi
    You Wan
    Neuroscience Bulletin, 2021, 37 : 423 - 426
  • [33] CRISPR-Cas9 A Precise Approach to Genome Engineering
    Simon, Jorge E.
    Rodriguez, Angel S.
    Santiago Vispo, Nelson
    THERAPEUTIC INNOVATION & REGULATORY SCIENCE, 2018, 52 (06) : 701 - 707
  • [34] CRISPR-Cas9: A Precise Approach to Genome Engineering
    Jorge E. Simón
    Ángel S. Rodríguez
    Nelson Santiago Vispo
    Therapeutic Innovation & Regulatory Science, 2018, 52 : 701 - 707
  • [35] Genome editing of Ralstonia eutropha using an electroporation-based CRISPR-Cas9 technique
    Bin Xiong
    Zhongkang Li
    Li Liu
    Dongdong Zhao
    Xueli Zhang
    Changhao Bi
    Biotechnology for Biofuels, 11
  • [36] Heritable and Precise Zebrafish Genome Editing Using a CRISPR-Cas System
    Hwang, Woong Y.
    Fu, Yanfang
    Reyon, Deepak
    Maeder, Morgan L.
    Kaini, Prakriti
    Sander, Jeffry D.
    Joung, J. Keith
    Peterson, Randall T.
    Yeh, Jing-Ruey Joanna
    PLOS ONE, 2013, 8 (07):
  • [37] Genome editing of Ralstonia eutropha using an electroporation-based CRISPR-Cas9 technique
    Xiong, Bin
    Li, Zhongkang
    Liu, Li
    Zhao, Dongdong
    Zhang, Xueli
    Bi, Changhao
    BIOTECHNOLOGY FOR BIOFUELS, 2018, 11
  • [38] CRISPR-P 2.0: An Improved CRISPR-Cas9 Tool for Genome Editing in Plants
    Liu, Hao
    Ding, Yuduan
    Zhou, Yanqing
    Jin, Wenqi
    Xie, Kabin
    Chen, Ling-Ling
    MOLECULAR PLANT, 2017, 10 (03) : 530 - 532
  • [39] Programmable base editing in zebrafish using a modified CRISPR-Cas9 system
    Qin, Wei
    Lu, Xiaochan
    Lin, Shuo
    METHODS, 2018, 150 : 19 - 23
  • [40] Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining
    Takeshi Maruyama
    Stephanie K Dougan
    Matthias C Truttmann
    Angelina M Bilate
    Jessica R Ingram
    Hidde L Ploegh
    Nature Biotechnology, 2015, 33 : 538 - 542