An improved method for precise genome editing in zebrafish using CRISPR-Cas9 technique

被引:4
|
作者
Gasanov, Eugene V. [1 ]
Jedrychowska, Justyna [1 ,2 ]
Pastor, Michal [1 ,3 ]
Wiweger, Malgorzata [1 ]
Methner, Axel [4 ]
Korzh, Vladimir P. [1 ]
机构
[1] Int Inst Mol & Cell Biol Warsaw, Ks Trojdena Str 4, PL-02109 Warsaw, Poland
[2] Med Univ Warsaw, Postgrad Sch Mol Med, Zwirki & Wigury Str 61, PL-02091 Warsaw, Poland
[3] Polish Acad Sci, Inst Biochem & Biophys, Pawinskiego Str 5a, PL-02106 Warsaw, Poland
[4] Univ Med Ctr Mainz, Inst Mol Med, Langenbeckstr 1, D-55131 Mainz, Germany
关键词
CRISPR-Cas9; Zebrafish; Precise deletion editing; gRNAs; HRM;
D O I
10.1007/s11033-020-06125-8
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Current methods of CRISPR-Cas9-mediated site-specific mutagenesis create deletions and small insertions at the target site which are repaired by imprecise non-homologous end-joining. Targeting of the Cas9 nuclease relies on a short guide RNA (gRNA) corresponding to the genome sequence approximately at the intended site of intervention. We here propose an improved version of CRISPR-Cas9 genome editing that relies on two complementary guide RNAs instead of one. Two guide RNAs delimit the intervention site and allow the precise deletion of several nucleotides at the target site. As proof of concept, we generated heterozygous deletion mutants of the kcng4b, gdap1, and ghitm genes in the zebrafish Danio rerio using this method. A further analysis by high-resolution DNA melting demonstrated a high efficiency and a low background of unpredicted mutations. The use of two complementary gRNAs improves CRISPR-Cas9 specificity and allows the creation of predictable and precise mutations in the genome of D. rerio.
引用
收藏
页码:1951 / 1957
页数:7
相关论文
共 50 条
  • [21] Inducible in vivo genome editing with CRISPR-Cas9
    Dow, Lukas E.
    Fisher, Jonathan
    O'Rourke, Kevin P.
    Muley, Ashlesha
    Kastenhuber, Edward R.
    Livshits, Geulah
    Tschaharganeh, Darjus F.
    Socci, Nicholas D.
    Lowe, Scott W.
    NATURE BIOTECHNOLOGY, 2015, 33 (04) : 390 - U98
  • [22] CRISPR-Cas9 Based Bacteriophage Genome Editing
    Zhang, Xueli
    Zhang, Chaohui
    Liang, Caijiao
    Li, Bizhou
    Meng, Fanmei
    Ai, Yuncan
    MICROBIOLOGY SPECTRUM, 2022, 10 (04):
  • [23] Development and application of CRISPR-Cas9 for genome editing
    Zhang, Feng
    TRANSGENIC RESEARCH, 2014, 23 (05) : 842 - 842
  • [24] Photoactivatable CRISPR-Cas9 for optogenetic genome editing
    Yuta Nihongaki
    Fuun Kawano
    Takahiro Nakajima
    Moritoshi Sato
    Nature Biotechnology, 2015, 33 : 755 - 760
  • [25] A glance at genome editing with CRISPR-Cas9 technology
    Barman, Antara
    Deb, Bornali
    Chakraborty, Supriyo
    CURRENT GENETICS, 2020, 66 (03) : 447 - 462
  • [26] Genome Editing in Cowpea Vigna unguiculata Using CRISPR-Cas9
    Ji, Jie
    Zhang, Chunyang
    Sun, Zhongfeng
    Wang, Longlong
    Duanmu, Deqiang
    Fan, Qiuling
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (10)
  • [27] Conditional Genome Editing in the Mammalian Brain Using CRISPR-Cas9
    Sun, Haojie
    Zheng, Jie
    Yi, Ming
    Wan, You
    NEUROSCIENCE BULLETIN, 2021, 37 (03) : 423 - 426
  • [28] Conditional Genome Editing in the Mammalian Brain Using CRISPR-Cas9
    Haojie Sun
    Jie Zheng
    Ming Yi
    You Wan
    Neuroscience Bulletin, 2021, 37 (03) : 423 - 426
  • [29] Genome editing in Shiraia bambusicola using CRISPR-Cas9 system
    Deng, Huaxiang
    Gao, Ruijie
    Liao, Xiangru
    Cai, Yujie
    JOURNAL OF BIOTECHNOLOGY, 2017, 259 : 228 - 234
  • [30] Decorating chromatin for enhanced genome editing using CRISPR-Cas9
    Chen, Evelyn
    Lin-Shiao, Enrique
    Trinidad, Marena
    Doost, Mohammad Saffari
    Colognori, David
    Doudna, Jennifer A.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2022, 119 (49)