Existence Theorems for Mixed Riemann-Liouville and Caputo Fractional Differential Equations and Inclusions with Nonlocal Fractional Integro-Differential Boundary Conditions

被引:16
|
作者
Ntouyas, Sotiris K. [1 ,2 ]
Alsaedi, Ahmed [2 ]
Ahmad, Bashir [2 ]
机构
[1] Univ Ioannina, Dept Math, GR-45110 Ioannina, Greece
[2] King Abdulaziz Univ, Nonlinear Anal & Appl Math NAAM Res Grp, Dept Math, Fac Sci, POB 80203, Jeddah 21589, Saudi Arabia
关键词
fractional derivatives; fractional integral; boundary value problems; existence; uniqueness; fixed-point theorems;
D O I
10.3390/fractalfract3020021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we discuss the existence and uniqueness of solutions for a new class of single and multi-valued boundary value problems involving both Riemann-Liouville and Caputo fractional derivatives, and nonlocal fractional integro-differential boundary conditions. Our results rely on modern tools of functional analysis. We also demonstrate the application of the obtained results with the aid of examples.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [1] Existence results for Riemann-Liouville fractional integro-differential inclusions with fractional nonlocal integral boundary conditions
    Ahmad, Bashir
    Alghamdi, Badrah
    Alsaedi, Ahmed
    Ntouyas, K. Sotiris
    AIMS MATHEMATICS, 2021, 6 (07): : 7093 - 7110
  • [2] Riemann-Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditions
    Bashir Ahmad
    Juan J Nieto
    Boundary Value Problems, 2011
  • [3] Riemann-Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditions
    Ahmad, Bashir
    Nieto, Juan J.
    BOUNDARY VALUE PROBLEMS, 2011, : 1 - 9
  • [4] RIEMANN-LIOUVILLE FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS WITH FRACTIONAL NONLOCAL MULTI-POINT BOUNDARY CONDITIONS
    Ahmad, Bashir
    Alghamdi, Badrah
    Agarwal, Ravi P.
    Alsaedi, Ahmed
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (01)
  • [5] Existence results for mixed Hadamard and Riemann-Liouville fractional integro-differential inclusions
    Ahmad, Bashir
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (12): : 6333 - 6347
  • [6] Existence of Solutions for Caputo Sequential Fractional Differential Inclusions with Nonlocal Generalized Riemann-Liouville Boundary Conditions
    Manigandan, Murugesan
    Shanmugam, Saravanan
    Rhaima, Mohamed
    Sekar, Elango
    FRACTAL AND FRACTIONAL, 2024, 8 (08)
  • [7] Existence results for mixed Hadamard and Riemann-Liouville fractional integro-differential equations
    Bashir Ahmad
    Sotiris K Ntouyas
    Jessada Tariboon
    Advances in Difference Equations, 2015
  • [8] Existence results for mixed Hadamard and Riemann-Liouville fractional integro-differential equations
    Ahmad, Bashir
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [9] Caputo type fractional differential equations with nonlocal Riemann-Liouville integral boundary conditions
    Ahmad B.
    Ntouyas S.K.
    Assolami A.
    Journal of Applied Mathematics and Computing, 2013, 41 (1-2) : 339 - 350
  • [10] EXISTENCE OF SOLUTIONS FOR FRACTIONAL DIFFERENTIAL INCLUSIONS WITH NONLOCAL RIEMANN-LIOUVILLE INTEGRAL BOUNDARY CONDITIONS
    Ahmad, Bashir
    Ntouyas, Sotiris
    MATHEMATICA BOHEMICA, 2014, 139 (03): : 451 - 465