Existence Theorems for Mixed Riemann-Liouville and Caputo Fractional Differential Equations and Inclusions with Nonlocal Fractional Integro-Differential Boundary Conditions

被引:16
|
作者
Ntouyas, Sotiris K. [1 ,2 ]
Alsaedi, Ahmed [2 ]
Ahmad, Bashir [2 ]
机构
[1] Univ Ioannina, Dept Math, GR-45110 Ioannina, Greece
[2] King Abdulaziz Univ, Nonlinear Anal & Appl Math NAAM Res Grp, Dept Math, Fac Sci, POB 80203, Jeddah 21589, Saudi Arabia
关键词
fractional derivatives; fractional integral; boundary value problems; existence; uniqueness; fixed-point theorems;
D O I
10.3390/fractalfract3020021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we discuss the existence and uniqueness of solutions for a new class of single and multi-valued boundary value problems involving both Riemann-Liouville and Caputo fractional derivatives, and nonlocal fractional integro-differential boundary conditions. Our results rely on modern tools of functional analysis. We also demonstrate the application of the obtained results with the aid of examples.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [21] Nonlocal Boundary Value Problems for Riemann-Liouville Fractional Differential Inclusions with Hadamard Fractional Integral Boundary Conditions
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    Thaiprayoon, Chatthai
    TAIWANESE JOURNAL OF MATHEMATICS, 2016, 20 (01): : 91 - 107
  • [22] Analysis of Caputo Sequential Fractional Differential Equations with Generalized Riemann-Liouville Boundary Conditions
    Gunasekaran, Nallappan
    Manigandan, Murugesan
    Vinoth, Seralan
    Vadivel, Rajarathinam
    FRACTAL AND FRACTIONAL, 2024, 8 (08)
  • [23] System of Riemann-Liouville fractional differential equations with nonlocal boundary conditions: Existence, uniqueness, and multiplicity of solutions
    Padhi, Seshadev
    Prasad, B. S. R., V
    Mahendru, Divya
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (10) : 8125 - 8149
  • [24] EXISTENCE AND CONTINUATION THEOREMS OF RIEMANN-LIOUVILLE TYPE FRACTIONAL DIFFERENTIAL EQUATIONS
    Kou, Chunhai
    Zhou, Huacheng
    Li, Changpin
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (04):
  • [25] A study of mixed Hadamard and Riemann-Liouville fractional integro-differential inclusions via endpoint theory
    Ahmad, Bashir
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    APPLIED MATHEMATICS LETTERS, 2016, 52 : 9 - 14
  • [26] Existence Results for Coupled Implicit ψ-Riemann-Liouville Fractional Differential Equations with Nonlocal Conditions
    Jiang, Dinghong
    Bai, Chuanzhi
    AXIOMS, 2022, 11 (03)
  • [27] MULTI-TERM FRACTIONAL DIFFERENTIAL EQUATIONS AND INCLUSIONS WITH GENERALIZED NONLOCAL FRACTIONAL INTEGRO-DIFFERENTIAL BOUNDARY CONDITIONS
    Ahmad, Bashir
    Ntouyas, Sotiris K.
    Alsaedi, Ahmed
    Alghanmi, Madeaha
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2018,
  • [28] A study of a nonlinear Riemann-Liouville coupled integro-differential system with coupled nonlocal fractional integro-multipoint boundary conditions
    Ahmad, Bashir
    Alsaedi, Ahmed
    Alghamdi, Badrah
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2023, 24 (07) : 2605 - 2625
  • [29] Existence result for nonlinear fractional differential equations with nonlocal fractional integro-differential boundary conditions in Banach spaces
    Seba, Djamila
    Rebai, Hamza
    Henderson, Johnny
    GEORGIAN MATHEMATICAL JOURNAL, 2021, 28 (01) : 141 - 147
  • [30] Nonlocal Hadamard fractional integral conditions for nonlinear Riemann-Liouville fractional differential equations
    Jessada Tariboon
    Sotiris K Ntouyas
    Weerawat Sudsutad
    Boundary Value Problems, 2014