Existence Theorems for Mixed Riemann-Liouville and Caputo Fractional Differential Equations and Inclusions with Nonlocal Fractional Integro-Differential Boundary Conditions

被引:16
|
作者
Ntouyas, Sotiris K. [1 ,2 ]
Alsaedi, Ahmed [2 ]
Ahmad, Bashir [2 ]
机构
[1] Univ Ioannina, Dept Math, GR-45110 Ioannina, Greece
[2] King Abdulaziz Univ, Nonlinear Anal & Appl Math NAAM Res Grp, Dept Math, Fac Sci, POB 80203, Jeddah 21589, Saudi Arabia
关键词
fractional derivatives; fractional integral; boundary value problems; existence; uniqueness; fixed-point theorems;
D O I
10.3390/fractalfract3020021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we discuss the existence and uniqueness of solutions for a new class of single and multi-valued boundary value problems involving both Riemann-Liouville and Caputo fractional derivatives, and nonlocal fractional integro-differential boundary conditions. Our results rely on modern tools of functional analysis. We also demonstrate the application of the obtained results with the aid of examples.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [31] Nonlocal Hadamard fractional integral conditions for nonlinear Riemann-Liouville fractional differential equations
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    Sudsutad, Weerawat
    BOUNDARY VALUE PROBLEMS, 2014,
  • [32] On the existence of solutions for nonlocal sequential boundary fractional differential equations via ψ-Riemann-Liouville derivative
    Haddouchi, Faouzi
    Samei, Mohammad Esmael
    BOUNDARY VALUE PROBLEMS, 2024, 2024 (01):
  • [33] Existence of solutions of Caputo fractional integro-differential equations
    Kazemi, Manochehr
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2025, 13 (02): : 568 - 577
  • [34] Fractional Differential and Integral Equations of Riemann-Liouville versus Caputo
    Vatsala, A. S.
    Lakshmikantham, V.
    APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS '34, 2008, 1067 : 87 - +
  • [35] Caputo Type Fractional Differential Equations with Nonlocal Riemann-Liouville and Erdelyi-Kober Type Integral Boundary Conditions
    Ahmad, Bashir
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    Alsaedi, Ahmed
    FILOMAT, 2017, 31 (14) : 4515 - 4529
  • [36] Sequential Riemann-Liouville and Hadamard-Caputo Fractional Differential Systems with Nonlocal Coupled Fractional Integral Boundary Conditions
    Kiataramkul, Chanakarn
    Yukunthorn, Weera
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    AXIOMS, 2021, 10 (03)
  • [37] Nonlinear sequential Riemann-Liouville and Caputo fractional differential equations with generalized fractional integral conditions
    Promsakon, Chanon
    Phuangthong, Nawapol
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [38] Existence of the positive solutions for boundary value problems of mixed differential equations involving the Caputo and Riemann-Liouville fractional derivatives
    Liu, Yujing
    Yan, Chenguang
    Jiang, Weihua
    BOUNDARY VALUE PROBLEMS, 2023, 2023 (01)
  • [39] Existence and Uniqueness Results for Nonlinear Implicit Riemann-Liouville Fractional Differential Equations with Nonlocal Conditions
    Lachouri, Adel
    Ardjouni, Abdelouaheb
    Djoudi, Ahcene
    FILOMAT, 2020, 34 (14) : 4881 - 4891
  • [40] Existence of solutions for fractional differential inclusions with four-point nonlocal Riemann-Liouville type integral boundary conditions
    Ahmad, Bashir
    Ntouyas, Sotiris K.
    FILOMAT, 2013, 27 (06) : 1027 - 1036