Existence results for mixed Hadamard and Riemann-Liouville fractional integro-differential inclusions

被引:0
|
作者
Ahmad, Bashir [1 ]
Ntouyas, Sotiris K. [1 ,2 ]
Tariboon, Jessada [3 ,4 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Nonlinear Anal & Appl Math NAAM Res Grp, POB 80203, Jeddah 21589, Saudi Arabia
[2] Univ Ioannina, Dept Math, Ioannina 45110, Greece
[3] King Mongkuts Univ Technol North Bangkok, Fac Sci Appl, Dept Math, Nonlinear Dynam Anal Res Ctr, Bangkok 10800, Thailand
[4] CHE, Ctr Excellence Math, Sri Ayutthaya Rd, Bangkok 10400, Thailand
来源
关键词
Fractional differential inclusions; Hadamard derivative; Riemann-Liouville derivative; fixed point theorem; DIFFERENTIAL-INCLUSIONS; CHAOTIC SYSTEMS; ORDER SYSTEMS; SYNCHRONIZATION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate a new class of mixed initial value problems of Hadamard and Riemann-Liouville fractional integro-differential inclusions. The existence of solutions for convex valued (the upper semicontinuous) case is established by means of Krasnoselskii's fixed point theorem for multivalued maps and nonlinear alternative criterion, while the existence result for non-convex valued maps (the Lipschitz case) relies on a fixed point theorem due to Covitz and Nadler. Illustrative examples are also included. (C) 2016 all rights reserved.
引用
收藏
页码:6333 / 6347
页数:15
相关论文
共 50 条
  • [1] Existence results for mixed Hadamard and Riemann-Liouville fractional integro-differential equations
    Bashir Ahmad
    Sotiris K Ntouyas
    Jessada Tariboon
    Advances in Difference Equations, 2015
  • [2] Existence results for mixed Hadamard and Riemann-Liouville fractional integro-differential equations
    Ahmad, Bashir
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [3] A study of mixed Hadamard and Riemann-Liouville fractional integro-differential inclusions via endpoint theory
    Ahmad, Bashir
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    APPLIED MATHEMATICS LETTERS, 2016, 52 : 9 - 14
  • [4] Existence results for Riemann-Liouville fractional integro-differential inclusions with fractional nonlocal integral boundary conditions
    Ahmad, Bashir
    Alghamdi, Badrah
    Alsaedi, Ahmed
    Ntouyas, K. Sotiris
    AIMS MATHEMATICS, 2021, 6 (07): : 7093 - 7110
  • [5] Existence Theorems for Mixed Riemann-Liouville and Caputo Fractional Differential Equations and Inclusions with Nonlocal Fractional Integro-Differential Boundary Conditions
    Ntouyas, Sotiris K.
    Alsaedi, Ahmed
    Ahmad, Bashir
    FRACTAL AND FRACTIONAL, 2019, 3 (02) : 1 - 20
  • [6] EXISTENCE RESULTS FOR RIEMANN-LIOUVILLE FRACTIONAL EVOLUTION INCLUSIONS
    Huang, Yong
    Lv, Jingyun
    Liu, Zhenhai
    MISKOLC MATHEMATICAL NOTES, 2016, 17 (01) : 305 - 325
  • [7] On coupled impulsive fractional integro-differential equations with Riemann-Liouville derivatives
    Wang, Xiaoming
    Alam, Mehboob
    Zada, Akbar
    AIMS MATHEMATICS, 2021, 6 (02): : 1561 - 1595
  • [8] Local existence for an impulsive fractional neutral integro-differential system with Riemann-Liouville fractional derivatives in a Banach space
    Kalamani, Palaniyappan
    Baleanu, Dumitru
    Arjunan, Mani Mallika
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [9] Riemann-Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditions
    Ahmad, Bashir
    Nieto, Juan J.
    BOUNDARY VALUE PROBLEMS, 2011, : 1 - 9
  • [10] Riemann-Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditions
    Bashir Ahmad
    Juan J Nieto
    Boundary Value Problems, 2011